장력 침투계(Disk Tension Infiltrometer)와 van Genuchten-Mualem 모형 적용에 따른 불포화수리 전도도의 비교 해석

Comparison of Disk Tension Infiltrometer and van Genuchten-Mualem Model on Estimation of Unsaturated Hydraulic Conductivity

  • Hur, Seung-Oh (Soil Management Division, National Institute of Agricultural Science & Technology, RDA) ;
  • Jung, Kang-Ho (Soil Management Division, National Institute of Agricultural Science & Technology, RDA) ;
  • Park, Chan-Won (Soil Management Division, National Institute of Agricultural Science & Technology, RDA) ;
  • Ha, Sang-Keun (Soil Management Division, National Institute of Agricultural Science & Technology, RDA) ;
  • Kim, Geong-Gyu (Division of Environmental Science and Ecological Engineering, Korea University)
  • 투고 : 2006.07.18
  • 심사 : 2006.09.16
  • 발행 : 2006.10.30

초록

수리 전도도는 수리구배에 대한 플럭스의 비율을 나타내며, 포화된 토양에서의 물의 이동이 포화수리전도도이고 불포화된 토양에서의 이동이 불포화수리전도도이다. 일반적인 밭 상태에서의 토양수분 조건은 불포화수리전도도로 표시하는 것이 적절하나 그 상태를 표현하기가 쉽지 않다. 토양의 불포화 상태를 나타내는데 가장 많이 쓰이고 있는 VGM(van Genuchten Mualem) 모형은 토양수분 포텐셜과 수분함량의 함수로 구성된 모형이며 몇 가지 매개변수가 필요하다. VGM 모형의 매개변수를 얻기 위해 본 연구에서는 VGM 모형의 매개변수를 계산해주는 프로그램인 Rosetta를 사용하였다. Rosetta 모형은 신경그물 얼개(neural network)를 이용하여 토양의 물리적 자료들인 토성이나 모래, 미사, 점토 함량 또는 용적밀도나 33 kPa, 1500 kPa에서의 토양수분 함량 자료를 가지고 VGM의 매개변수인 Ko(effedive saturated hydraulic conductivity), ${\theta}r$(residual soil water content), ${\theta}s$(saturated soil water content), L, n, m(=1-1/n)을 예측하는 모형으로 미국 농무성(USDA-ARS)에서 개발한 프로그램이다. Rosetta를 이용하여 10kPa에서의 불포화수리전도도를 예측하였다. 또한 Gardner와 Wooding의 모형을 기반으로 하여 만들어진 장력침투계의 포화수리전도도 값을 Gardner식에 적용하여 1, 3, 5, 7 kPa에서의 불포화수리전도도 값을 17개 토양통을 대상으로 하여 구했다. 토양수분 potential이 3 kPa에서는 물의 이동이 거의 없는 토양들이 있었는데 반해 남계통을 비롯한 학곡통, 회곡통, 백산통, 상주통, 석천통, 예산통 등 7개의 토양은 3 kPa에서도 약간의 물의 이동이 있었다. 또한, 1 kPa에서 물의 이동은 삼각통에서 $40.8{\times}10^{-5}cm{\cdot}sec^{-1}$로 이동 속도가 가장 컸으며 그 뒤로 예산통, 화봉통, 학곡통, 백산통 등이 토양에서 빠른 속도로 이동하였다. 가천통이나 석천통 및 우곡통은 1 kPa에서의 이동 속도가 아주 느린 토양으로 판단되었다. PTF와 VG모형에 의해 얻어진 10 kPa에서의 수분함량 예측 값을 VGM 모형에 적용해 불포화수리전도도를 구했을 때, VG모형에 의한 예측 값은 존재하는 반면 PTF에 의한 값은 결측 값이 존재해 그 적용에 한계가 있었다. 그리고 1 kPa에서 불포화 수리전도도를 VGM 모형으로 예측한 값과 측정된 값을 Gardner 모형으로 해석한 값을 비교했을 때 자갈이 없는 토양에서는 일정한 경향(exponential 함수)이 존재한 반면, 자갈이 있는 토양에서는 경향을 발견할 수가 없었다. 이상의 결과로 불포화 수리전도도 특성평가에 대한 VGM 모형의 적용성을 살펴보았을 때는 우리나라와 같이 경사지가 많고 토심이 깊지 않으면서 자갈함량이 많은 토양에서는 한계가 있을 것으로 판단되었다.

Hydraulic conductivity is the rate of water flux on hydraulic gradient. The van Genuchten Mualem (VGM) model is frequently used for describing unsaturated state of soils, that is composed with the function of soil water potential and soil water content and requests various parameters. This study is to get the value of VGM parameters used Rosetta computer program based on neural network analysis method and to calculate VGM parameters. VGM parameters included Ko(effective saturated hydraulic conductivity), ${\theta}r$(residual soil water content), ${\theta}s$(saturated soil water content), L, n and m. The unsaturated hydraulic conductivity at 10 kPa was calculated by using Rosetta program. Unsaturated hydraulic conductivities of 17 soil series at 1, 3, 5, 7 kPa were also obtained by applying saturated hydraulic conductivity by disk tension infiltrometer based on Gardner and Wooding's equation. Water flow at the water potential of 3 kPa was very low except Namgye, Hagog, Baegsan, Sangju, Seogcheon, Yesan soil series. Unsaturated hydraulic conductivity at 1 kPa showed the highest value for Samgag soil series and was in order of Yesan, Hwabong, Hagog and Baegsan soil series. Those of Gacheon, Seocheon and Ugog soil series were very low. When the value by VGM was compared with the value by disc tension infiltrometer, there was a tendency with exponential function to soils without gravel but there was no tendency to soils including gravel. Conclusively, it would be limited that VGM model for unsaturated hydraulic conductivity analysis applies to Korean agricultural land including gravel and having steep slope, shallow soil depth.

키워드

참고문헌

  1. Ankeny, M.D., T.C. Kaspar, and R. Horton. 1988. Design for automated tension infiltrometer. Soil Sci. Soc. Am. J. 52:893-896 https://doi.org/10.2136/sssaj1988.03615995005200030054x
  2. Ankeny, M.D., T.C. Kaspar, and R. Horton. 1991. Simple method for determining unsaturated hydraulic conductivity. Soil Sci. Soc. Am. J. 55:467-470 https://doi.org/10.2136/sssaj1991.03615995005500020028x
  3. Cornelis, W.M., J. Ronsyn, M.V. Meirvenne, and R. Hartmann. 2001. Evaluation of pedotransfer functions for oredicting the soil moisture retention curve. Soil Sci. Soc. Am. J. 65:638-648 https://doi.org/10.2136/sssaj2001.653638x
  4. Eom, K.C., G.C. Song, G.S. Ryu, Y.K. Sonn, and S.E. Lee. 1995. Model equations to estimate the soil water characteristics curve using scaling factor. J. Korean Soc. Soil Sci. Fert. 28:227-232
  5. Gardner, W.R. 1958. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci. 85:228-232 https://doi.org/10.1097/00010694-195804000-00006
  6. Givi, J., S.O. Prasher, and R.M. Patel. 2004. Evaluation of pedotransfer functions in predicting the soil water contents at field capacity and wilting point. Agricultural Water Management. 70:83-96 https://doi.org/10.1016/j.agwat.2004.06.009
  7. Hussen, A.A., and A.W. Warrick. 1991. Measurement of unsaturated hydraulic conductivity in the field. Ph.D. Dissertation, p.150, Univ. of Arizona., Tucson
  8. Hussen, A.A., and A.W. Warrick. 1993. Altenative analyses of hydraulic data from disc tension infiltrometer. Water Resources Research. 29:4103-4108 https://doi.org/10.1029/93WR02404
  9. Jung, Y.S., G.S. Ryu, and J.N. Im. 1980. Infiltration rate of some upland soil in Korea. J. Korean Soc. Soil Sci. Fert. 13:1-6
  10. Jung, Y.S., L.Y. Kim, and J.N. Im. 1981. One dimensional heat flow equation incorporated with the vertical water flow on paddy soils - I. An analytical solution and it's application to tow different paddy soils with different percolation rates. J. Korean Soc. Soil Sci. Fert. 14:179-184
  11. Lien, B. 1989. Field measurement of soil soptivity and hydraulic conductivity, M.S. Thesis, p.93, Univ. of Arizona., Tucson
  12. Logsdon, S.D., and D.B. Jaynes. 1993. Methodology for determining hydraulic conductivity with tension infiltrometer. Soil Sci. Soc. Am. J. 57:1426-1431 https://doi.org/10.2136/sssaj1993.03615995005700060005x
  13. Mualem, Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research. 12:593-622
  14. Park, M.E., and S.H. Yoo. 1982. A comparison pf soil hydraulic conductivities determined by three different methods in a sandy loam soil. J. Korean Soc. Soil Sci. Fert. 16:14-19
  15. Reynolds, W.D., and D.E. Elrick. 1991. Detemrination of hydraulic conductivity using a tension infiltrometer. Soil Sci. Soc. Am. J. 55:633-639 https://doi.org/10.2136/sssaj1991.03615995005500030001x
  16. Ro, H.M., and S.H. Yoo. 1984. Calculation of unsaturated hydraulic conductivity from soil moisture changes in Pressure-Plate extractor. J. Korean Soc. Soil Sci. Fert. 17:7-11
  17. Rumelhart, D.E., McClelland J.L., and the PDP Research Group. 1986. Parallel Distributed Processing: Exploration in the Microstructure of Cognition. Vol.1. MIT Press, Cambridge, USA
  18. Schaap, M.G., and W. Bouten. 1996. Modeling water retention curves of sandy soils using neural networks. Water Resour. Res. 32:3033-3040 https://doi.org/10.1029/96WR02278
  19. Schaap, M.G., Leij F.J., and van Genuchten M.Th. 1998. Neural network analysis for hierarchical prediction of soil water retention and saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 62:847-855 https://doi.org/10.2136/sssaj1998.03615995006200040001x
  20. Schwartz, R.C., and S.R. Evett. 2002. Estimating hydraulic properties of a fine-textured soil using a disc infiltrometer. Soil Sci. Soc. Am. J. 66:409-1423
  21. van Genuchten, M. Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44:892-898 https://doi.org/10.2136/sssaj1980.03615995004400050002x
  22. Warick A.W. 2002. Soil physics companion. p.37, 75-76. CRC Press LLC. Boca Raton. USA
  23. Wooding, R.A. 1968. Steady infiltration from shallow circular pond, Water Resources Research, 4:1259-1273 https://doi.org/10.1029/WR004i006p01259
  24. Yoo, S.H. 2002. Soil encyclopedia. Seoul National University Press. Seoul, Korea