DOI QR코드

DOI QR Code

Molecular Characterization and Expression Patterns of Porcine Eukaryotic Elongation Factor 1 A

  • Wang, H.L. (Department of Gene and Cell Engineering, Institute of Animal Science Chinese Academy of Agricultural Sciences) ;
  • Wang, H. (Department of Gene and Cell Engineering, Institute of Animal Science Chinese Academy of Agricultural Sciences) ;
  • Zhu, Z.M. (Department of Gene and Cell Engineering, Institute of Animal Science Chinese Academy of Agricultural Sciences) ;
  • Yang, S.L. (Department of Gene and Cell Engineering, Institute of Animal Science Chinese Academy of Agricultural Sciences) ;
  • Fen, S.T. (Department of Gene and Cell Engineering, Institute of Animal Science Chinese Academy of Agricultural Sciences) ;
  • Li, Kui (Department of Gene and Cell Engineering, Institute of Animal Science Chinese Academy of Agricultural Sciences)
  • Received : 2005.11.18
  • Accepted : 2006.02.21
  • Published : 2006.07.01

Abstract

The eukaryotic elongation factor 1 A (EEF1A) participates in protein synthesis by forming the eEF1A GTP tRNA complex to deliver aminoacyl-tRNA to the A site of ribosomes. This study described cDNA sequences and partial genomic structure of porcine EEF1A1. The porcine EEF1A1 gene encoded a protein with 462 amino acids, which shared complete homology with human, chimpanzee and dog. The temporal expression pattern showed the diversity of EEF1A1 level in mRNA was relatively minor in prenatal embryo skeletal muscle, however, the expression decreased during aging after birth in skeletal muscle of the Chinese Tongcheng pig. The spatial expression patterns indicated that the gene expressed in skeletal muscle, heart, lung, liver, kidney, fat and spleen. In addition, we assigned the gene to porcine chromosome 1 using a radiation hybrid panel.

Keywords

References

  1. Carr-Schmid, A., N. Durko, J. Cavallius, W. C. Merrick and T. G. Kinzy. 1999. Mutations in a GTP-binding Motif of Eukaryotic Elongation Factor 1A Reduce Both Translational Fidelity and the Requirement for Nucleotide Exchange. J. Bio. Chem. 274:30297-30302 https://doi.org/10.1074/jbc.274.42.30297
  2. Cavallius, J., S. I. Rattan and B. F. Clark. 1986. Changes in activity and amount of active elongation factor 1 alpha in aging and immortal human fibroblast cultures. Exp. Gerontol. 21:149-157 https://doi.org/10.1016/0531-5565(86)90068-9
  3. Chiron, S., A. Suleau and N. Bonnefoy. 2005. Mitochondrial Translation Elongation Factor Tu Is Essential in Fission Yeast and Depends on an Exchange Factor Conserved in Humans but Not in Budding Yeast. Genet. 169:1891-1901 https://doi.org/10.1534/genetics.104.037473
  4. Dever, U. E., M. J. Glynias and W. C. Merrick. 1987. Biochemistry GTP-binding domain: Three consensus sequence elements with distinct spacing. Proc. Natl. Acad. Sci. 84:1814-1818
  5. Joseph, S. and H. F. Noller. 1998. EF-G-catalyzed translocation of anticodon stem-loop analogs of transfer RNA in the ribosome. EMBO. 17:3478-3483 https://doi.org/10.1093/emboj/17.12.3478
  6. Knudsen, C., H. J. Wieden and M. V. Rodnina. 2001. The Importance of Structural Transitions of the Switch II Region for the Functions of Elongation Factor Tu on the Ribosome. J. Biol. Chem. 276:22183-22190 https://doi.org/10.1074/jbc.M102186200
  7. Lamberti, A., M. Caraglia, O. Longo, M. Marra, A. Abbruzzese and P. Arcari. 2004. The translation elongation factor 1A in tumorigenesis, signal transduction and apoptosis: Review article. Amino Acids. 26:443-448
  8. Lund, A., S. M. Knudsen, H. Vissing, B. Clark and N. Tommerup. 1996. Assignment of Human Elongation Factor 1a Genes: EEF1A Maps to Chromosome 6q14 and EEF1A2 to 20q13.3. Genomics. 36:359-361 https://doi.org/10.1006/geno.1996.0475
  9. Milan, D., R. Hawken, C. Cabau, S. Leroux, C. Genet, Y. Lahbib, G. Tosser, A. Robic, F. Hatey, L. Alexander, C. Beattie, L. Schook, M. Yerle and J. Gellin. 2000. IMpRH Server: an RH mapping server available on the Web. Bioinformatics. 16:558-559 https://doi.org/10.1093/bioinformatics/16.6.558
  10. Pan, P. W., S. H. Zhao, M. Yu, B. Liu, T. A. Xiong and K. Li. 2003. Identification of differentially expressed genes in the longissimus dorsi muscle tissue between duroc and erhualian pigs by mRNA differential display. Asian-Aust. J. Anim. Sci. 16:1066-1070 https://doi.org/10.5713/ajas.2003.1066
  11. Sanders, J., R. Raggiaschi, J. Morales and W. Moller. 1993. The human leucine zipper-containing guanine-nucleotide exchange protein elongation factor-1 delta. Biochim. Biophys. Acta. 1174:87-90 https://doi.org/10.1016/0167-4781(93)90097-W
  12. Shao, M. Y., H. Wang, H. Y. Ren, Z. M. Zhu, S. L. Yang and K. Li. 2006. Assignment of CRSP9, ETF1 and TMEM59 genes to porcine chromosomes. Cytogenet Genome Res. 112:3421 (DOI.10.1159/000089899)
  13. Yang, J., M. Yu, B. Liu, B. Fan, M. Zhu, T. Xiong and K. Li. 2005. Cloning and Initial Analysis of Porcine MPDU1 Gene. Asian-Aust. J. Anim. Sci. 18:1237-1241 https://doi.org/10.5713/ajas.2005.1237
  14. Zhao, S. H., D. Nettleton, W. Liu, C. Fitzsimmons, C. W. Ernst, N. E. Raney and C. K. Tuggle. 2003. Complementary DNA macroarray analyses of differential gene expression in porcine fetal and postnatal muscle. J. Anim. Sci. 81:2179-2188
  15. Zhu, Z. M., J. B. Zhang, K. Li and S. H. Zhao. 2005. Cloning, mapping and association study with carcass traits of the porcine SDHD gene. Anim. Genet. 36:191-195 https://doi.org/10.1111/j.1365-2052.2005.01270.x

Cited by

  1. Porcine EEF1A1 and EEF1A2 genes: genomic structure, polymorphism, mapping and expression vol.42, pp.8, 2015, https://doi.org/10.1007/s11033-015-3866-x
  2. Expression Characterization, Polymorphism and Chromosomal Location of the Porcine Calsarcin-3 Gene vol.20, pp.9, 2006, https://doi.org/10.5713/ajas.2007.1349
  3. The Porcine FoxO1, FoxO3a and FoxO4 Genes: Cloning, Mapping, Expression and Association Analysis with Meat Production Traits vol.20, pp.5, 2006, https://doi.org/10.5713/ajas.2007.627