Effects of Sediment Harvesting on Bacterial Community Structure

골재채취가 세균군집구조에 미치는 영향

  • Park, Ji-Eun (Department of Life Sciences, Daegu University) ;
  • Lee, Young-Ok (Department of Life Sciences, Daegu University)
  • 박지은 (대구대학교 자연과학대학 생명과학과) ;
  • 이영옥 (대구대학교 자연과학대학 생명과학과)
  • Published : 2006.06.01

Abstract

The dynamics of bacterial populations belonging to $\alpha\;\beta\;\gamma-subclass$ proteobacteria, Cytophaga-Flavobacterium (CF) group and sulfate reducing bacteria (SRB) in water column of the middle reaches of Nakdong River depending on sediment harvesting were analyzed by fluorescent in situ hybridization (FISH) at sediment harvesting site (near the Seongju bridge) and non-sediment harvesting site (near the Gumi bridge). In addition, some physico-chemical parameters such as temperature, pH, $chi-\alpha$ and electrical conductivity were measured. Regarding the number of total cell counts, cells stained by DAPI, there were no substantial quantitative differences between both sites, but those fluctuation at sediment Harvesting site was greater. And also the ratios of CFgroup and SRB to total cell counts tend to increase at sediment harvesting site with higher $chl-\alpha$, maybe due to the resuspension of sediment into water column. But the total proportion of all determined bacterial populations to total cell counts were greater at non-sediment harvesting site, compared with those at sediment harvesting site. Since the detectibility of bacteria by FISH depends on their metabolic activity, those lower proportion at the sediment harvesting site implies that sediment harvesting may lead to malfunction of those bacteria respect to nutrient recycling and subsequently negative effects on microbial food web.

골재채취가 수층의 세균군집구조에 미치는 영향을 알아보기 위해 낙동강 중류, 골재채취가 이루어 지지 않은 수역인 구미대교와 장기간에 걸쳐 연속적으로 골재채취가 행해지는 지역인 성주군 소학리 (성주대교 인근)에서 $\alpha\;\beta\;\gamma-subclass$ proteobacteria, Cytophaga-Flavobacterium (CF) group 세균군과 황산염화원세균을 FISH법으로 정량분석하였다. 아울러 수온, pH, EC, 엽록소-$\alpha$ 양 등의 이화학적인 환경요인도 측정하였다. DAPI로 염색된 세균수로 측정한 총세균수의 경우, 두 정점간의 괄목할 만한 양적인 차이는 없었으나 그 시간차에 따른 변동이 골재채취 수역에서 더욱 심했다. 또한 높은 엽록소-$\alpha$ 양을 나타낸 골재채취 수역에서 검출한 CF group 세균군과 황산염환원세균이 총세균수에서 차지하는 비율이 비골재채취 수역에 비해 높았다. 이같은 결과는 저니질이 수층으로 재유입되었기 때문으로 판단된다. 그러나 본 연구에서 검출한 세균군이 총세균수에서 차지하는 비율을 합하면 그 비율은 골재채취 수역보다 비골재채취 수역에서 더 높았다. FISH법에 의한 세균의 검출가능성이 해당세균의 물질대사능과 연관이 있으므로 골재채취 수역에서의 낮은 세균 검출율은 골재채취가 세균의 물질순환에서의 역기능을 초래하고 이는 또한 연차적으로 그들의 먹이연쇄에 부정적인 영향을 미칠 가능성을 시사하는 것이다.

Keywords

References

  1. 강영훈, 서준원, 금지돈, 양홍준. 2004. 낙동강 중류 (구미 지역)의 어류군집구조. 한국육수학회지. 37:227-235
  2. 김동주, 홍선희, 안태석. 1999. 소양호에서 세균군집소의 계절적. 수직적 변화. 한국미생물학회지. 35:242-247
  3. 박정원, 최재신, 김미경. 2004. 낙동강 중류 지역의 부착규조 군집의 변화와 유기오탁지수 (DAIpo)에 의한 수질평가. 한국육수학회지. 37:70-77
  4. 한국건설연구원. 2001. 한국건설연구원 자료집
  5. Alfreider AJ, R Pernthhaler, B Amann, FO Sattler, A Glockner, A Wille and R Psenner. 1996. Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization. Appl. Environ. Microbiol. 62:2138-2144
  6. Amann R, W Ludwig and KH Schleifer. 1994. Identification of uncultured bacteria: A challenging task for molecular taxonomists. ASM News 60:360-365
  7. Amann R, W Ludwig and KH Schleifer. 1995. Phylogenetic and in situ detection of individual microbial cells without cultivation. Microbial. Rev. 59: 143-169
  8. APHA, AWWA, WEF. 1995. Standard methods for the examination of water and wastewater. 19th ed. American Public Health Association, Washington, DC
  9. DeLong EF, GS Wickham and AA Davis, 1993. Phylogenetic diversity of substrate marine microbial communities from the Atlantics and Pacific Oceans. Science 243:1360-1363 https://doi.org/10.1126/science.2466341
  10. Glockner FO, BM Fuchs and R Amann. 1999. Bacterioplankton composition of lake and oceans: a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol. 65:3721-3726
  11. Hicks R, R Amann and DA Stahl. 1992 Dual staining of natural bacterioplankton with 4, 6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom level 16S rRNA sequences. Appl. Environ. Microbiol. 58:2158-2136
  12. Kim HW, KH Chang and GJ Joo. 2005. Characteristics and inter-annual variability of zooplankton dynamics in the middle part of the river (Nakdong River). Korean J. Limnol. 38:412-419
  13. Lee YO, JH Park and JK Park. 2005. Microbial characterization of excessive growing biofilm in sewer lines using molecular technique. J. Microbiol. Biotechnol. 15:938-945
  14. Llobet-Brossa E, R Rosse116-Mora and R Amann. 1998. Microbial community composition of wadden sea sediments as revealed by fluorescence in situ hybridization. Appl. Environ. Microbiol. 64:2691-2696
  15. Manz W, R Amann, W Ludwig, M Wagner and KH Schleifer. 1992. Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions, system. Appl. Microbiol. 15:593-600 https://doi.org/10.1016/S0723-2020(11)80121-9
  16. Manz W, U Szewzyk, P Ericsson, R Amann, KH Schleifer and T Stenstom. 1993. In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes. Appl. Environ. Microbiol. 59:2293-2298
  17. Manz W, M Wagner, R Amann and KH Schleifer. 1994. In situ characterization of the microbial consortia active in two wastewater treatment plants. Wat. Res. 28: 1715-1723 https://doi.org/10.1016/0043-1354(94)90243-7
  18. Pernthhaler J, FO Glockner, S Unterholzner, A Alfreider, R Psenner and R Amann. 1998. Seasonal community and population dynamics of pelagic bacteria and archaea in a high mountain lake. Appl. Environ. Microbiol. 64:4299-4306
  19. Pusceddu A, C Fiordelmondo and R Danovaro. 2005. Sediment resuspension effects on the benthic microbial loop in experimental microcosms. Microbiol. Ecol. 50:602-613 https://doi.org/10.1007/s00248-005-5051-6
  20. Ramsing NB, H Fossing, TG Ferdelman. 1996. Distribution of bacterial populations in a stratified Fjord (Mariager Fjord, Denmark) quantified by in situ hydridization and related to chemical gradients in the water column. Appl. Environ. Microbiol. 62:1391-1404
  21. Schallenberg M and CW Burns. 2004. Effects of sediment resuspension on phytoplankton production:teasing apart the influences of light, nutrients and algal entrainment. Freshwat. Biol. 49:143-159 https://doi.org/10.1046/j.1365-2426.2003.01172.x
  22. Wagner M, GRath, HP Koops, J Floos and R Amann. 1996. In situ analysis of nitrifying bacteria in sewage treatment plants. Wat. Sci. Tech. 34:237-244
  23. Widdel F and Bak F. 1992. Gram-negative mesophilic sulfatereducing bacteria, 3352-3378. In: Balows A, HG Trupper, M Dworkin. W Harder and KH Schleifer. (ed.), The Prokaryotes, vol. 4. Springer-Verlag