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*'1 Abstract ]I

This paper discusses design sensitivity analysis and its application to a structural dynamics modification. Eigenvalue
derivatives are determined with respect to the element parameters, which include intrinsic property parameters such
as Young’s modulus, density of the material, diameter of a beam element, thickness of a plate element, and shape
parameters. Derivatives of stiffness and mass matrices are directly calculated by derivatives of element matrices. The
first and the second order derivatives of the eigenvalues are then mathematically derived from a dynamic equation
of motion of FEM model. The calculation of the second order eigenvalue derivative requires the sensitivity of its
corresponding eigenvector, which are developed by Nelson’s direct approach. The modified eigenvalue of the structure
is then evaluated by the Taylor series expansion with the first and the second derivatives of eigenvalue. Numerical
examples for simple beam and plate are presented. First, eigenvalues of the structural system are numerically calculated.
Second, the sensitivities of eigenvalues are then evaluated with respect to the element intrinsic parameters. The most
effective parameter is determined by comparing sensitivities. Finally, we predict the modified eigenvalue by Taylor
series expansion with the derivatives of eigenvalue for single parameter or multi parameters. The examples illustrate
the effectiveness of the eigenvalue sensitivity analysis for the optimization of the structures.
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1. Introduction

The modification of physical characteristics of a
structure requires iterative structural analysis due to
design changes. The direct approach includes numerical
methods such as the finite difference and the finite
element method. Though this approach is suitable for
relatively small proportion of design changes, it requires
a lot of iterative calculation as well as much computational
effort to reach constraint limits for a large system such
as stress, displacement, frequency and weight limits. In
addition, iterative methods, which are most useful for
relatively small changes of the structure, have convergence
problem, such that the convergence to the true solution
is not always ensured or might be too slow. Thus,
approximate reanalysis methods have become important
tools for the analysis of a structure. This is intimately
connected with the sensitivity.

When dynamic behavior such as natural frequency or
mode shape is to be determined, the eigensystem should
be solved. In order to predict the modified eigenvalue
due to design changes, the derivatives of the eigenvalues
and their corresponding eigenvectors should be evaluated.
Two methods for calculating the eigensensitivity are the
adjoint solution approach and the direct solution approach.
In the adjoint method, Lancaster'” derived expressions
for the first and the second derivatives of eigenvalues
with respect to a single parameter. Morgan developed the
same idea, but eigenvectors are not explicitly obtained®.
Garg and Rudisill proposed different direct methods to
obtain the eigensensitivity for symmetric system, which
do not require any left eigenvectors(H). Nelson developed
Rudisill and Chu’s method for an arbitrary n™ symmetric
or non-symmetric system((’). This is a very useful method
to calculate derivative of a eigenvector when the matrix
of the system is sparse. Murthy and Haftka established
the general guidelines for the selection of the most

efficient method”

. They found the efficiency of these
methods depends on the number of design variables as

well as the number of eigenvalues. The finite element

method has been recently used for the analysis of
structures extensively. Element parameters are taken as
design variables in calculating the eigensensitivity. Kirch
presented some approximate reanalysis methods based on
series expansion and modified non-polynomial series™.
Kirsch and Toledano suggested several effective approxi-
mation techniques and applied them to static problems(g).
Rizai and Bernard used the first and the second deriva-
tives of eigenvalues for predicting the modified eigenvalue
due to design changes. They determined the derivatives
of stiffness and mass matrices by the finite difference
method. Vanderplaats took element parameters as variables'”.
First derivatives of eigenvalues were applied to approximate
optimization problems. They considered move limits of
80% changes relative to the predefined design, and showed
that this approach allows the iteration number as well as
computational time to be reduced.

In this paper, sensitivity analysis and modification by
Taylor series with the first and the second derivatives of
eigenvalue are combined together to effectively change
the eigenvalue of a structure. For design changes, the
most sensitive element parameter in the structure is first
identified by eigensensitivity. This element is then
modified and the new eigenvalue can be approximately
predicted. Eigen-sensitivities with respect to element
intrinsic parameters are derived. We then applied the
Nelson’s direct method to the eigenvalue problem of
dynamic system in order to calulate the sensitivity of the
eigenvector. The approximate eigenvalues can be predicted
for design changes. The approximate method is based on
the Taylor series expansion for a single or multiple
variables in this work to find the modified frequency due
to design changes. The modified frequencies are not only
approximated by using a Taylor series expansion but also
compared to direct solutions, which are evaluated from
a finite element procedure. Intrinsic parameters such as
a thickness of a plate element or the diameter of the
circular beam are considered. A program has been

developed based on the above procedure.
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2. Derivatives of Eigenvalue and
Eigenvector

2.1 Equation of Motion

Consider a continuum structure such as beam or plate
with mass density per unit area p(z,,), applied load
filz t). p(z,) and f,(z,.t) are differentiable in the
closure of domain D. The equation of motion of the
structure for the forced vibration without damping is
given by

—L[w(zi,t)}—l—f(zi,t) =1W[w(:ci,t)] z, €D

with boundary condition and initial condition as

B, [(mi,t)]: G, [(zi,t)]
1 [@st)]=g, (z,t)

z, €I

ziED

L and M are self-adjoint linear operators on D, and are
also self adjoint linear operators for the boundary con-
dition with initial conditions. Z, is also self adjoint linear
operator for the initial condition on domain D. I' is the
boundary. f(z,.t) is deleted for free vibration. The
equation of motion with variable separation yields

eigenvalue problem as

L We,)|= M WG| 5 €D
B, [(z)]=G,|(=,)] €T

A=’ and o is natural frequency. The eigenvalue

equation is then written in the form
(&)= [4) X, = 0] M

A, is the /™ eigenvalue, X, is the i eigenvector. [K]
and [M] are stiffness matrix and mass matrix respectively,
which are symmetrical matrices Eigenvectors are taken to
be M-orthogonal, and then equation (1) is pre-multiplicated
by X”. i" The ith eigenvalue can be written by

N =XTKX, )

2.2 Derivative of Eigenvalue

The differentiation of equation (1) with respect to the

design parameter, p, yields

E
a—p[([K] =\ [M)X.]=10] 3)
or
P (ol a0
(K]~ x, () w Lo Mo op (M, @

Since X,"([&] - X, [M)=[0] and XT[MX, =1, pre-
multiplication of equation (4) by X" yields

ax . 9lG]

=Nk )
and

oGl oK | oM

w ©

The eigenvalue sensitivities calculated by equation (5)
tell us which parameter are the most sensitive variables
and hence reduces the computational effort to predict
approximate eigenvalues due to the design change. How-
ever, if the second order derivatives of eigenvalues are
included in the approximation procedure, approximate
eigenvalues may be much closer to exact solutions in the
neighborhood of the baseline design parameter. The
second derivative of the eigenvalues is drived by taking

derivative of equation (5) in the expression.

2\, {82 2
B_Z’ZX;(ﬂ_)\i aa[;; )Xz
/4
G,
il
k2 ap T 1 ap 3
G| 8X,
—2X.T8[ i oX, @)
' op op

Equation (7) requires calculation of the first order
eigenvalue sensitivity and its corresponding eigenvector

sensitivity.
2.3 Derivative of Eigenvector

The sensitivity of eigenvector is required for the
calculation of the second order derivative of eigenvector.

10
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The substitution of equation (2) and (S) into equation (4)

yields

X
(KN )7t F, ®)
and

G, 8|G,
o2 IJ%(XT G,
T Bp T ap k3

Jinnx ©
Since X;"F, =0, the matrix on the left-hand side of
equation (7) is of rank (n-1), but the n-equations are
consistent. Although these equations can’t be uniquely
solved for the eigenvector derivative, any n-component
vector can be represented as a linear combination of the
remaining (n-1) eigenvectors. The derivative of eigenvector
can be then expressed as
alxX,

c’)pl =g X, =XA

(10)

A is a column vector with element a,. Substitution of

equation (10) into equation (8) and pre-multiplication by

X7 gives

XK - [M)XA=X"F, 1n
or

(Al =A14=X"F, (12)

([Al=X,[1]) denotes a diagonal matrix with elements
{\,— ;) at row and column k. The element of matrix 4,

is expressed as follows

k=1

(13)

The eigenvector derivative can be uniquely expressed

in terms of (n-1) of the system eigenvectors and the "

as follows.
oX, &
ap :kglaka +a. X (14)

11

or

ox,
— =V, +a4 (15)
op

Substituting equation (15) into equation (8) and applying
X7 ([K]— ), [M) = (0] and X"[M X, =[]], equation (8) can
be written in the form
(K]~ X [M) V, = F, (16)

In order to determine g; in equation (15), the partial
derivative of X7[MX, =[] is used

8 X
PREALL NPT Sy Rk S 17
T 1M o a7
or
o, = X704V, - Sx7 M (18

i g op

The eigenvector derivatives are calculated by equation
(15) where V; and @, can be calculated from linear

equation (16) and equation (18). However, V, is very

hard to determine since the inverse of ([K]—X [M) is
singular matrix and equation (16) is of rank (n-1). In
comparing equation (1) with equation (16), X; is the
homogeneous solution, which is known and V, is a
particular solution. By partitioning of the matrix in

equation (16) can be written in the form

(K*/\/M)u (K_)‘rM)uc (K_)‘imlii Vl Fl
[(K_’\i]u)kl (K_/\iM)kk (K*/\rM)k:J(Vk]={fk] 19)
(Kf)‘ijw)zx (K‘)‘ilmzk (K_)‘i]w)f} V;. Es

Elimination of & equation in the simultaneous linear
equation (18) transforms the equation (19) as follows

k-

kxan (e xan =l s

Vs (K- )‘iM)iik - Fs) (20)
The complete solution for V, and V, is obtained by
solving equation (20) with setting v, =0. Therefore, the

K" - & row and column element in equation (19) are zero
except for & - ¥ element, which can be written in the
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form.

(K_’\imll 0 (K_’\i]mla Vi F
SR
(K_’\iM)sl 0 (K_)‘i]mss | F,

The sensitivities of eigenvectors are directly calculated
by substituting ¥ into equation (13), which can be written
in the form

= Y -+ a; zk
v |v)

The matrix on the left-hand side of equation (22) is of
rank n and has the same bandedness as the characteristic

22

equation (1). The important step in the above calculation
is to decide the A" element of the eigenvector X, such
that the absolute of z, is the largest number in the
elements of eigenvector X;”= {z,,,,-- 2, }. If the absolute
value of z, is very small compared to the largest com-
ponent in the X;, the numerical solution of the equation
(22) yields inaccurate results or will blow up. [K], [/,

olKl/ep, olMl/op, o°(Kl/ap’ and 8%[M/ep® are given in
appendix

2.4 Approximate eigenvalue for design modi—

_ fication
Modified eigenvalues due to change of a single design
parameter are approximately determined by Taylor series
expansion with neglecting terms of higher than 3"

derivative

o\ 1 8%,
A +dp, )=\, +—dp, +—
l(pko pk) 1(1”1:0) op, P T o,

@) (23)
Py and dp, are the predefined value of design para-
meter, p,, and its increrrient. Now, consider a case that
multiple parameters are simultaneously modified. The
amount of change to each parameter is first to be
determined. Design change to each parameter is determined
based on the relative sensitivity, which is defined by

A
— ]
gj_ |/\

i,m|

@4

12

Mi.m is the sensitivity of i eigenvalue with respect to

parameter, p,,. |\ | is the maximum value in absolute

4,m

eigenvalue derivatives. Design changes are then determined
by

D; =Py + dp]- (25)
and
dp; =, (26)

7 is the weighting function, which depends on the type
of parameter or structural model. The Taylor series
expansion then becomes,

o BN,
)‘i (7) :)\l (p107p207'“apn(])+ E _"(’ng) (27)
i=19;

The modified eigenvalues are completely approximated
by equation (27), although the determination of the

weighting function depends on the experience of design

engineering.
3. Numerical Results and Discussions

3.1 Circular cantilever beam

Fig. 1 shows a circular cantilever beam. It is composed
of five elements with ten degrees of freedom. Its elastic
modulus is 207GPa, mass density 7.754x10°kg/mm’,
initial diameter 6.35mm, length of the beam 127mm,
Poisson’s ratio 0.3. The element diameter is considered
as a parameter to evaluate the sensitivity for the lowest
eigenvalue, in which d, means the diameter of element q.
The lowest frequency is 283.03Hz. Mass matrix, stiffness
matrices, their derivatives and eigenvalue derivatives of
the system are directly calculated by self-developed

program. Table 1 presents derivatives on the lowest

2 3 4 5 6
(9]
(1) (@) (3) (4) (3) <

|

25.4 25.4 25.4 25.4 25.4
| 254 | 2se | 254 | w5 |

Fig. 1 FEM model of the circular cantilever beam
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natural frequency and the absolute value of 1, | is the
largest as well as that of ), ; is the smallest. This means
that d; is the most sensitive parameter and d; is the least
sensitive parameter for the modification of the funda-
mental natural frequency. The lowest natural frequency
is then effectively modified as modifying d,. Frequencies
due to design change are approximately calculated based
on a Taylor series expansion, in which first and second
order terms are included.

Fig. 2~6 illustrates a comparison of FEM solutions,

Table 1 Derivatives of eigenvalue with respect to
element diameter: /,=283.03Hz

Diameter | 4, d, dy d, dg
6f1/6d,- 53.47 | 24.60 4.30 -11.15 | -26.73
a%f )/ adf -0.5 -0.86 -0.60 -0.46 -0.17
450 _a
400 ~ é!fg/‘
o /
w300
N )
= 250
Qo 4
$ 2004
3 -
g 1504 A
IC 1 «
1007 —=— Mod.Freq.1
50 —e— Mod.Freq.2
ol * —a—FEM
s 2 5 6 7 8 9 10
Diameter 1
Fig. 2 Approximate frequency due to d; change
380 4
360 -
340 /-/.
320 - /./ ./A’_.A———A
. 3004 = .
I 280-
§ 260
S 240
o
® 220
w
200 / —a— Mod.Freq.1
180-] & / —e— Mod.Freq.2
1601 o —a—FEM
140 T T T T T T T
3 4 5 6 7 8 9 10
Diameter 2

Fig. 3 Approximate frequency due to 4, change

13

where mod. freq. 1 means approximate frequencies based
on the first order sensitivity and mod. Freq. 2 means
approximate frequencies based on the first and the second
order derivatives. This shows that approximate frequency
obtained by including the second order term is better than

290

280

= AN
I 2o e / '\
= A&
2 260+ /7 \
o
3
T 250 &
i
240 —a— Mod.Freq.1
230 —e— Mod.Freq.2
4 —a—FEM
220 T T T T T T T
3 4 5 6 7 8 9 10
Diameter 3
Fig. 4 Approximate frequency due to d3 change
320 5
310 n —a— Mod.Freq.1
400 s —e— Mod.Freq.2
A —a—FEM
290 ~
§ 280
§ 2704
3]
g, 260
[
L 250 \\
240+
230 \-
220 T T T T T T T
3 4 5 6 7 8 9 10
Diameter 4
Fig. 5 Approximate frequency due to d; change
380 4
360 —ua— Mod.Freq.1
340 ] LNy —e— Mod.Freq.2
320 ] —a—FEM
I~ 300
< 2804
8 260 4
[
o 240
@
& 2204
200 <
180 -
160
3 4 5 5 7 s 9 10

Diameter 5

Fig. 6 Approximate frequency due to ds change
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those obtained only by including the first order term
except for d; < 5.5mm. Since the second order derivative
turns rapidly from a positive value to a negative value
in the neighborhood of the baseline d,,. It seems clear
that it is necessary to re-evaluate the system, though
frequencies for the deign change are effectively approxi-
mated by using second order sensitivity. Fig. 4 shows a
result for the least sensitive design parameter d;. Fig. 7
shows frequency changes with respect to weighting value
7. Fig. 8 shows that we optimize the circular beam from
283.03Hz to 400Hz with three times re-evaluations by

simultaneous multivariable changes. Fig. 9 presents the

440+

- -

Frequency[Hz]
¢

340 |

320 —=a— Mod.Freq.1

300 —e— Mod.Freq.2
—4a— FEM

280 T T T

T T T T
00 02 04 06 08 10 12 14 16 18
Weighting Function

Fig. 7 Approximate frequency to weighting function

500
o]
460 4
440 4
420 /\.\

400 - .

380 4
360 4
340 —=— Approx.
320 - —e— FEM

300 —aA— Baseline
280 - —w— Object

260 T T T T
[ 1 2 3

Optimization Order

Frequency[Hz]

Fig. 8 Optimization order for the natural freq. of 400Hz

<r.| ——
~ -+
| 254 | 254 | 254 | 254 | 254 |

i e

Fig. 9 Optimized beam with the natural freq. of 400Hz

beam geometry with 400Hz. Whenever the difference
between the modified frequencies and the FEM solutions
is greater than 5%, the cantilever beam is reevaluated by
FEM. The third approximated frequencies are greatly
close to the FEM results.

3.2 Fixed-fixed rectangular plate

The clamped rectangular plate is shown in Fig. 10. The
plate has 64 nodes, 49 elements and 108 degrees of
freedom. Its elastic modulus is 207GPa, mass density
7.754x10"°kg/mm’, thickness 25.4mm, the side length of
the plate 2540mm, Poisson’s ratio 0.3. Its fundamental
frequency is 11.34Hz. We modified the plate with 20 Hz
of the fundamental frequency by applying the same
procedure for the previous beam design. Thickness of
element was taken as design parameter. The most sensitive
elements for the fundamental frequency were /s, t2, fs,
and fs, whose 1% and 2™ derivative were 0.0263, 0.0012,
respectively. The approximate frequencies calculated by
using the 1% and 2™ order sensitivities are compared to
FEM results in the Fig. 11. This shows that approximate
frequency obtained by the second order sensitivity in the
Taylor series expansion is closer to the FEM results. Fig.
12 shows the optimized cross section of the plate whose
fundamental frequency is 20Hz.

1157 58 59 60 61 62 63 64
(43) | (44) | (45) | (46) | (47) | (48) | (49)

(36)

&
100.1
L.

2| @3 | (2e) | (25 | (28) | (27 | (28)

25
-1 (18)
Ty
(8)
/9 ;
Mm@ | @ @ e e | @]
LT E 3 a4 s s 78
100.1
r |

Fig. 10 FEM model of clamped plate
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Fig. 11 Approximate frequency to weighting function

1
(22) [ (@31 ] (24) | (25) | (28) [ 27y | (28)
Th'n 214 0,92 1.20 194 120 0.92 214

Fig. 12 Optimized plate (A-A cross section in Fig. 10)

4. Conclusions

A finite element program is developed for the calcula-
tion of sensitivity and modification of one and two
dimensional structures. The program includes IMSL
subroutines. The first and the second order sensitivity
based on element design parameter are calculated for the
eigenvalue. The first order sensitivity is used for locating
the most sensitive element. The first and the second order
sensitivity are used for design modification by Taylor
series expansion. The approximated frequency by the
first and the second derivatives is usually better than that
by the first. In addition, the eigenvalue should be often
reevaluated by FEM code, as the inflection point is close
to the baseline and the change amount of parameter is
large. Many design engineering problems allow for
weighting factor to be generally greater than -1.0 and less
than 1.0 for the design optimization. However, a con-
venient computational method for determining the move
limit would be useful in a practical application. The
numerical results presented show that the new natural
frequencies are approximated from a Taylor series ex-

pansion. The sensitivity approach makes greatly reduce

15

the routine efforts for the finite element analysis in order

to optimize.
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Appendix

Stiffness matrix of element and mass matrix are
formulated by

], = [ (BB (A1)
M, = [ V7BV (A2)

[B] is the strain displacement, [D] is the elasticity
matrix, [NV] is the shape function matrix, [J| is the
Jacobian determinant, [3] is the matrix of the element
density and geometric variable. The first order derivatives

of stiffness matrix and mass matrix are written in the

form

olKl, 781D

D—p_-/,,[B] F[B]|J|azy (A3)
alM, 78(8]

= / 1T (A%

The second order derivatives of stiffness matrix and

mass matrix are written in the form,

62[](16: TBZ[D]
o / BT Bl (AS)
62[Me_ Taz[,g}
P f ) . (V]| dv. (A6)
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