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HYPERBOLIC CURVATURE AND K-CONVEX FUNCTIONS

TAI SUNG SONG

ABSTRACT. Let v be a C? curve in the open unit disk D. Flinn and Osgood proved
that Kp(z,v) > 1 for all z € v if and only if the curve f o~y is convex for every
convex conformal mapping f of D, where Kp(z,v) denotes the hyperbolic curvature
of v at the point z. In this paper we establish a generalization of the Flinn-Osgood
characterization for a curve with the hyperbolic curvature at least 1.

1. INTRODUCTION

We begin with a brief introduction to hyperbolic regions in the complex plane C.
A general discussion of hyperbolic regions can be found in [1] and [6]. A region
in C is called hyperbolic if the complement of 2 with respect to C contains at least
two points. Let D={z : |z] < 1} be the open unit disk in C. The hyperbolic metric

on D is defined by
2|dz|

1- 2"

If a region  is hyperbolic, then, by the uniformization theorem (2, p.39], there

Ap (2) |dz| =

is a holomorphic universal covering projection ¢ of D onto Q. The density Aq (z) of
the hyperbolic metric A (2) |dz] on a hyperbolic region 2 is obtained from

Ao (e (2) ¢ (2)] = Ao (2),
where ¢ is any holomorphic universal covering projection of D onto 2. The hyper-
bolic metric is invariant under holomorphic covering projections. In particular, the
hyperbolic metric is a conformal invariant.
A hyperbolic simply connected region  is said to be k-convex (k > 0) if ja — b] <
2/k for any pair of distinct points a,b € €2 and the intersection Ej[a, b] of two closed
disks of radii 1/k that have both a and b on their boundaries lies in 2. A hyperbolic
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simply connected region  is said to be 0-convex if Egla,b] is in © for any pair of
distinct points a and b in 2, where Fy[a,b] is the closed line segment joining a and
b. We will always use convex instead of 0-convex. Mejia and Minda [4] proved that
if 2 is a hyperbolic simply connected region bounded by a simple closed curve 852
of class C? and if K, (2,09) > k for all z € 89, then Q is k-convex. Here K, (z,00)
denotes the euclidean curvature of 8 at the point z.

Let us recall the definition of the hyperbolic curvature. For more details, see (3]
and [5]. If v is a C? curve in a hyperbolic region © with parametrization z = z (t),
then the hyperbolic curvature of vy at the point z = z (t) is given by

e

where

Kele) = it | S0

denotes the euclidean curvature of v at z = z(t). Since Ap (2) = 2/ (1 - ]z]z), we
have
202 (t)}
12 ()]

for a C? curve v : z = 2z (t) in D. Because the hyperbolic metric is invariant under

Kp (z,7) = % (1 - 1212) Ke (z,7) +Im [

holomorphic covering projections, so is the hyperbolic curvature. In particular, the
hyperbolic curvature is conformally invariant.

Let v be a positively oriented circle in D with center 0 and radius r € (0,1). A
parametrization of y is z = 2 (t) = re®, 0 <t < 27. Then

Kee7) = i {”((t)} 2

As z(t)2'(t)/ |2’ ()| = ir so that

1-721 1 1
KD(Z,’Y)Z 5 ;+T‘=§<T+;).

Note that r + % > 2. Since the hyperbolic curvature is a conformal invariant, it
follows that any circle in D has the hyperbolic curvature strictly larger than 1.

Let v be the positively oriented circle |z — a| = 1 — a where 0 < @ < 1. This
circle is internally tangent to the unit circle at the point 1. A parametrization of
vis z = 2(t) = a+ (1 — a)e*. 0 < t < 2m. Note that 2(0) = 2(27) = 1 ¢ D.
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Then we obtain K.(z,7) = 1/(1 — a). Since 1 — |z|? = 2(1 ~ a){a — acost) and

2[t)2'(t)/ |2'(t)] = i(acost + 1 — a), we obtain
— a)(a - acost
Kp (z,7) = 24 a)(c; acos )1 ! - +acost+1—-a=1.

Since the hyperbolic curvature is a conformal invariant, it follows that any oricycle in
D, that is, a circle internally tangent to the unit circle, has the hyperbolic curvature
1.

A conformal mapping f of the unit disk D is called k-convex provided f(D) is a
k-convex region. A C? curve v is said to be k-convex provided K.(z,7v) > k for all
z € 7. Let v be a C? curve in D. Flinn and Osgood [3] proved that Kp(z,v) > 1
for all z € v if and only if the curve f o4 is convex for every convex conformal
mapping f of D. In this paper we establish a generalization of the Flinn-Osgood
characterization for a curve with the hyperbolic curvature at least 1. More precisely,
we prove that Kp(z,v) > 1 for all z € v if and only if the curve f o v is k-convex

for every k-convex conformal mapping f of D.

2. MAIN RESULTS

Let £ be a hyperbolic region in C. Fix a € Q and let w = (z) be a holomorphic
universal covering projection (D, 0) onto (£2,a). From the identity

2)Z€Da

Aalp(2) [¢'(2)] = I%

we obtain

log Ao (p(2)) + = logcp )+ = log«p ¢'(2) = log 2 — log(1 — 27). .
We apply the operator 8/8.2 to both SldeS of this identity and obtain

dlog Aa(p(z)) Sz + 19'(z) %
Ow 2¢'(z) 1—2z
For z = 0, this identity yields

dlog Ma(p(a)) _  1¢"(0)

1 =
@) ow T 24/(0)2
Mejia and Minda [4] proved that if €2 is a k-convex region, then for z € Q
0log Aa(z) 1 2k
2 b 34 USZR [P g 1- =
( ) ' 32 -2 Q( ) /\Q(z)




154 TA1 SuNG SoNG

with equality if and only if Q is a disk of radius 1/k. We establish a sufficient
condition for a curve in a k-convex region to be k-convex.

Theorem 1. Let v be a C? curve in a k-convez region Q0 with nonvanishing tangent
and z € v. Then Kg(z,v) > 1 implies K¢(z,v) > k.

Proof. From the definition of the hyperbolic curvature, we obtain
_ dlog Malz) (1)
Ke(Z,’Y) - Kﬂ(zal)/)/\ﬂ(z) - 211’[1{ 9z |Z’(t)|
0log An(z)
Oz
Since Kq(z,v) > 1, it follows from (2) and (3) that

3)

> Kao(z,7)Aa(z) - 2,

2
-k s

- 2%k
I+ 1- 56
O
We now establish a condition for a curve in D to have the hyperbolic curvature

at least 1.

Theorem 2. Let vy be a C? curve in the open unit disk D with nonvanishing tangent.
Then Kp(z,v) > 1 for all z € v if and only if the curve f o~y is k-convex for every
k-convez conformal mapping f of D.

Proof. Suppose Kp(z,7y) > 1forall z € v. Let f be a k-convex conformal mapping of
D onto a k-convex region 0. Since the hyperbolic curvature is a conformal invariant,

Kq (f(Z), f O’Y) = KD('Z»’Y) > 1
Because  is k-convex. Theorem 1 yields K, (f(z), fo7) > k.

Conversely, suppose the curve f o 7y is k-convex for every k-convex conformal
mapping f of D. We note that for o > 0, the function

az
w=f(z) = ———=az+ a1+ akz?+ -
1) 1— 1+ akz

is a k-convex conformal mapping of D. The region @ = f(D) is the disk with
center —M/k and radius 1/k. Since the hyperbolic curvature is invariant
under conformal mappings, we may assume that z = 0 without loss of generality.
Furthermore, we may also assume that —i is the unit tangent to v at the origin,
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that is, —i = 2'(tp)/ |2’ (t0)|, where z(¢3) = 0. Since f'(0) = a > 0, it follows that
~1 is also the unit tangent to f o~y at the origin. From (1), we obtain

dlog Mo (0) w'(ty) | 1 f(0)
(4) i { S e} = 370
Since Aq(0) = 2/f'(0) and K.(0, f o y) > k, it follows from the definition of the
hyperbolic curvature and (4) that
f'(0) f"(0)
Ka(0,foy) 2 == [k + 702

=92—k+\/1+ak>1.

Remark. If we put ¥ = 0 in Theorem 2, we recover the corresponding result for
convex regions which was established by Flinn and Osgood [3].

Let A be a disk in D, and let v denote the positively oriented boundary of A.
Then v is either a circle in D with Kp(z,7) > 1 or an oricycle in D with Kp(z,7) = 1.
Thus, Kp(z,7) > 1 in all cases. Hence Theorem 2 yields the following.

Corollary 3. Let A be a disk in the open unit disk D. If f is a k-convex conformal
mapping of D, then f(A) is k-convez.
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