HYPERBOLIC CURVATURE AND k-CONVEX FUNCTIONS

TAI SUNG SONG

ABSTRACT. Let γ be a C^2 curve in the open unit disk D. Flinn and Osgood proved that $K_D(z, \gamma) \geq 1$ for all $z \in \gamma$ if and only if the curve $f \circ \gamma$ is convex for every convex conformal mapping f of D, where $K_D(z, \gamma)$ denotes the hyperbolic curvature of γ at the point z. In this paper we establish a generalization of the Flinn-Osgood characterization for a curve with the hyperbolic curvature at least 1.

1. INTRODUCTION

We begin with a brief introduction to hyperbolic regions in the complex plane \mathbb{C}. A general discussion of hyperbolic regions can be found in [1] and [6]. A region Ω in \mathbb{C} is called hyperbolic if the complement of Ω with respect to \mathbb{C} contains at least two points. Let $D = \{z : |z| < 1\}$ be the open unit disk in \mathbb{C}. The hyperbolic metric on D is defined by

$$\lambda_D(z) |dz| = \frac{2|dz|}{1 - |z|^2}.$$

If a region Ω is hyperbolic, then, by the uniformization theorem [2, p.39], there is a holomorphic universal covering projection φ of D onto Ω. The density $\lambda_\Omega(z)$ of the hyperbolic metric $\lambda_\Omega(z) |dz|$ on a hyperbolic region Ω is obtained from

$$\lambda_\Omega(\varphi(z)) |\varphi'(z)| = \lambda_D(z),$$

where φ is any holomorphic universal covering projection of D onto Ω. The hyperbolic metric is invariant under holomorphic covering projections. In particular, the hyperbolic metric is a conformal invariant.

A hyperbolic simply connected region Ω is said to be k-convex ($k > 0$) if $|a - b| < 2/k$ for any pair of distinct points $a, b \in \Omega$ and the intersection $E_k[a, b]$ of two closed disks of radii $1/k$ that have both a and b on their boundaries lies in Ω. A hyperbolic
simply connected region Ω is said to be 0-convex if $E_0[a,b]$ is in Ω for any pair of distinct points a and b in Ω, where $E_0[a,b]$ is the closed line segment joining a and b. We will always use convex instead of 0-convex. Mejia and Minda [4] proved that if Ω is a hyperbolic simply connected region bounded by a simple closed curve $\partial \Omega$ of class C^2 and if $K_e(z, \partial \Omega) \geq k$ for all $z \in \partial \Omega$, then Ω is k-convex. Here $K_e(z, \partial \Omega)$ denotes the euclidean curvature of $\partial \Omega$ at the point z.

Let us recall the definition of the hyperbolic curvature. For more details, see [3] and [5]. If γ is a C^2 curve in a hyperbolic region Ω with parametrization $z = z(t)$, then the hyperbolic curvature of γ at the point $z = z(t)$ is given by

$$K_{\Omega}(z, \gamma) = \frac{1}{\lambda_{\Omega}(z)} \left[K_e(z, \gamma) + 2\text{Im} \left\{ \frac{\partial \log \lambda_{\Omega}(z)}{\partial z} \left(\frac{z'(t)}{|z'(t)|} \right) \right\} \right],$$

where

$$K_e(z, \gamma) = \frac{1}{|z'(t)|} \text{Im} \left[\frac{z''(t)}{z'(t)} \right]$$

denotes the euclidean curvature of γ at $z = z(t)$. Since $\lambda_D(z) = 2 \left(1 - |z|^2 \right)$, we have

$$K_D(z, \gamma) = \frac{1}{2} \left(1 - |z|^2 \right) K_e(z, \gamma) + \text{Im} \left[\frac{\overline{z(t)} z'(t)}{|z'(t)|} \right]$$

for a C^2 curve $\gamma : z = z(t)$ in \mathbb{D}. Because the hyperbolic metric is invariant under holomorphic covering projections, so is the hyperbolic curvature. In particular, the hyperbolic curvature is conformally invariant.

Let γ be a positively oriented circle in \mathbb{D} with center 0 and radius $r \in (0, 1)$. A parametrization of γ is $z = z(t) = re^{it}$, $0 \leq t \leq 2\pi$. Then

$$K_e(z, \gamma) = \frac{1}{|z'(t)|} \text{Im} \left\{ \frac{z''(t)}{z'(t)} \right\} = \frac{1}{r}.$$

As $\overline{z(t)} z'(t) / |z'(t)| = i \tau$ so that

$$K_D(z, \gamma) = \frac{1 - r^2}{2} \frac{1}{r} + r = \frac{1}{2} \left(r + \frac{1}{r} \right).$$

Note that $r + \frac{1}{r} > 2$. Since the hyperbolic curvature is a conformal invariant, it follows that any circle in \mathbb{D} has the hyperbolic curvature strictly larger than 1.

Let γ be the positively oriented circle $|z - a| = 1 - a$ where $0 < a < 1$. This circle is internally tangent to the unit circle at the point 1. A parametrization of γ is $z = z(t) = a + (1 - a)e^{it}$, $0 < t < 2\pi$. Note that $z(0) = z(2\pi) = 1 \notin \mathbb{D}$.

Then we obtain \(K_\varepsilon(z, \gamma) = 1/(1 - a) \). Since \(1 - |z|^2 = 2(1 - a)(a - a \cos t) \) and \(\frac{z(t)z'(t)}{|z'(t)|} = i(a \cos t + 1 - a) \), we obtain

\[
K_\mathbb{D}(z, \gamma) = \frac{2(1 - a)(a - a \cos t)}{2} \frac{1}{1 - a} + a \cos t + 1 - a = 1.
\]

Since the hyperbolic curvature is a conformal invariant, it follows that any oricycle in \(\mathbb{D} \), that is, a circle internally tangent to the unit circle, has the hyperbolic curvature 1.

A conformal mapping \(f \) of the unit disk \(\mathbb{D} \) is called \(k \)-convex provided \(f(\mathbb{D}) \) is a \(k \)-convex region. A \(C^2 \) curve \(\gamma \) is said to be \(k \)-convex provided \(K_\varepsilon(z, \gamma) \geq k \) for all \(z \in \gamma \). Let \(\gamma \) be a \(C^2 \) curve in \(\mathbb{D} \). Flinn and Osgood [3] proved that \(K_\mathbb{D}(z, \gamma) \geq 1 \) for all \(z \in \gamma \) if and only if the curve \(f \circ \gamma \) is convex for every convex conformal mapping \(f \) of \(\mathbb{D} \). In this paper we establish a generalization of the Flinn-Osgood characterization for a curve with the hyperbolic curvature at least 1. More precisely, we prove that \(K_\mathbb{D}(z, \gamma) \geq 1 \) for all \(z \in \gamma \) if and only if the curve \(f \circ \gamma \) is \(k \)-convex for every \(k \)-convex conformal mapping \(f \) of \(\mathbb{D} \).

2. **Main Results**

Let \(\Omega \) be a hyperbolic region in \(\mathbb{C} \). Fix \(a \in \Omega \) and let \(w = \varphi(z) \) be a holomorphic universal covering projection \((\mathbb{D}, 0)\) onto \((\Omega, a)\). From the identity

\[
\lambda_\Omega(\varphi(z)) |\varphi'(z)| = \frac{2}{1 - |z|^2}, \quad z \in \mathbb{D},
\]

we obtain

\[
\log \lambda_\Omega(\varphi(z)) + \frac{1}{2} \log \varphi'(z) + \frac{1}{2} \log \overline{\varphi'(z)} = \log 2 - \log(1 - z\overline{z}).
\]

We apply the operator \(\partial/\partial z \) to both sides of this identity and obtain

\[
\frac{\partial}{\partial w} \log \lambda_\Omega(\varphi(z)) \cdot \varphi'(z) + \frac{1}{2} \frac{\varphi''(z)}{\varphi'(z)} = \frac{\overline{z}}{1 - z\overline{z}}.
\]

For \(z = 0 \), this identity yields

\[
(1) \quad \frac{\partial}{\partial w} \log \lambda_\Omega(\varphi(a)) = \frac{1}{2} \frac{\varphi''(0)}{\varphi'(0)^2}.
\]

Mejia and Minda [4] proved that if \(\Omega \) is a \(k \)-convex region, then for \(z \in \Omega \)

\[
(2) \quad \left| \frac{\partial}{\partial z} \log \lambda_\Omega(z) \right| \leq \frac{1}{2} \lambda_\Omega(z) \sqrt{1 - \frac{2k}{\lambda_\Omega(z)}}
\]
with equality if and only if \(\Omega \) is a disk of radius \(1/k \). We establish a sufficient condition for a curve in a \(k \)-convex region to be \(k \)-convex.

Theorem 1. Let \(\gamma \) be a \(C^2 \) curve in a \(k \)-convex region \(\Omega \) with nonvanishing tangent and \(z \in \gamma \). Then \(K_{\Omega}(z, \gamma) \geq 1 \) implies \(K_e(z, \gamma) > k \).

Proof. From the definition of the hyperbolic curvature, we obtain

\[
K_e(z, \gamma) = K_{\Omega}(z, \gamma) \lambda_{\Omega}(z) - 2 \text{Im} \left\{ \frac{\partial \log \lambda_{\Omega}(z)}{\partial z} \frac{z'(t)}{|z'(t)|} \right\}
\]

\[
\geq K_{\Omega}(z, \gamma) \lambda_{\Omega}(z) - 2 \left| \frac{\partial \log \lambda_{\Omega}(z)}{\partial z} \right|.
\]

Since \(K_{\Omega}(z, \gamma) \geq 1 \), it follows from (2) and (3) that

\[
K_e(z, \gamma) \geq \lambda_{\Omega}(z) \left(1 - \sqrt{1 - \frac{2k}{\lambda_{\Omega}(z)}} \right)
\]

\[
= \frac{2k}{1 + \sqrt{1 - \frac{2k}{\lambda_{\Omega}(z)}}} > k.
\]

We now establish a condition for a curve in \(\mathbb{D} \) to have the hyperbolic curvature at least 1.

Theorem 2. Let \(\gamma \) be a \(C^2 \) curve in the open unit disk \(\mathbb{D} \) with nonvanishing tangent. Then \(K_{\mathbb{D}}(z, \gamma) \geq 1 \) for all \(z \in \gamma \) if and only if the curve \(f \circ \gamma \) is \(k \)-convex for every \(k \)-convex conformal mapping \(f \) of \(\mathbb{D} \).

Proof. Suppose \(K_{\mathbb{D}}(z, \gamma) \geq 1 \) for all \(z \in \gamma \). Let \(f \) be a \(k \)-convex conformal mapping of \(\mathbb{D} \) onto a \(k \)-convex region \(\Omega \). Since the hyperbolic curvature is a conformal invariant,

\[
K_{\Omega}(f(z), f \circ \gamma) = K_{\mathbb{D}}(z, \gamma) \geq 1.
\]

Because \(\Omega \) is \(k \)-convex, Theorem 1 yields \(K_e(f(z), f \circ \gamma) \geq k \).

Conversely, suppose the curve \(f \circ \gamma \) is \(k \)-convex for every \(k \)-convex conformal mapping \(f \) of \(\mathbb{D} \). We note that for \(\alpha > 0 \), the function

\[
w = f(z) = \frac{\alpha z}{1 - \sqrt{1 + \alpha k z^2}} = \alpha z + \alpha \sqrt{1 + \alpha k z^2} + \cdots
\]

is a \(k \)-convex conformal mapping of \(\mathbb{D} \). The region \(\Omega = f(\mathbb{D}) \) is the disk with center \(-\sqrt{1 + \alpha k} / k \) and radius \(1/k \). Since the hyperbolic curvature is invariant under conformal mappings, we may assume that \(z = 0 \) without loss of generality. Furthermore, we may also assume that \(-i\) is the unit tangent to \(\gamma \) at the origin,
that is, $-i = z'(t_0)/|z'(t_0)|$, where $z(t_0) = 0$. Since $f'(0) = \alpha > 0$, it follows that $-i$ is also the unit tangent to $f \circ \gamma$ at the origin. From (1), we obtain

\begin{equation}
\text{Im} \left\{ \frac{\partial \log \lambda_\Omega(0)}{\partial w} \left| \frac{w'(t_0)}{w'(t_0)} \right| \right\} = \frac{1}{2} \frac{f''(0)}{f'(0)^2}.
\end{equation}

Since $\lambda_\Omega(0) = 2/f'(0)$ and $K_\Omega(0, f \circ \gamma) \geq k$, it follows from the definition of the hyperbolic curvature and (4) that

\begin{align*}
K_\Omega(0, f \circ \gamma) & \geq \frac{f'(0)}{2} \left[k + \frac{f''(0)}{f'(0)^2} \right] \\
& = \frac{\alpha k}{2} + \sqrt{1 + \alpha k} > 1.
\end{align*}

Remark. If we put $k = 0$ in Theorem 2, we recover the corresponding result for convex regions which was established by Flinn and Osgood [3].

Let Δ be a disk in \mathbb{D}, and let γ denote the positively oriented boundary of Δ. Then γ is either a circle in \mathbb{D} with $K_\mathbb{D}(z, \gamma) > 1$ or an oricycle in \mathbb{D} with $K_\mathbb{D}(z, \gamma) = 1$. Thus, $K_\mathbb{D}(z, \gamma) \geq 1$ in all cases. Hence Theorem 2 yields the following.

Corollary 3. Let Δ be a disk in the open unit disk \mathbb{D}. If f is a k-convex conformal mapping of \mathbb{D}, then $f(\Delta)$ is k-convex.

References

Department of Mathematics Education, Pusan National University, Pusan 609-735, Korea

Email address: tssong@pusan.ac.kr