Secondary Carotenoid Accumulation in Haematococcus (Chlorophyceae): Biosynthesis, Regulation, and Biotechnology

  • Jin Eon-Seon (Department of Life Science, College of Natural Science, Hanyang University) ;
  • Lee Choul-Gyun (Department of Biotechnology, Institute of Industrial Biotechnology, Inha University) ;
  • Polle Jurgen E.W. (Department of Biology, Brooklyn College of the City University of New York)
  • Published : 2006.06.01

Abstract

Unicellular green algae of the genus Haematococcus have been studied extensively as model organisms for secondary carotenoid accumulation. Upon environmental stress, such as strong irradiance or nitrogen deficiency, unicellular green algae of the genus Haematococcus accumulate secondary carotenoids in vesicles in the cytosol. Because secondary carotenoid accumulation occurs only upon specific environmental stimuli, there is speculation about the regulation of the biosynthetic pathway specific for secondary carotenogenesis. Because the carotenoid biosynthesis pathway is located both in the chloroplast and the cytosol, communication between both cellular compartments must be considered. Recently, the induction and regulation of astaxanthin biosynthesis in microalgae received considerable attention because of the increasing use of this secondary carotenoid as a source of pigmentation for fish aquaculture, as a component in cancer prevention, and as a free-radical quencher. This review summarizes the biosynthesis and regulation of the pathway, as well as the biotechnology of astaxanthin production in Haematococcus.

References

  1. Albrecht, M., N. Misawa, and G. Sandmann. 1999. Metabolic engineering of the terpenoid biosynthetic pathway of Escherichia coli for production of the carotenoids ${\beta}$-carotene and zeaxanthin. Biotech. Lett. 21: 791-795. https://doi.org/10.1023/A:1005547827380
  2. Armstrong, G. A. 1997. Genetics of eubacterial carotenoid biosynthesis: A colorful tale. Annu. Rev. Microbiol. 51: 629-659 https://doi.org/10.1146/annurev.micro.51.1.629
  3. Bartley, G. E. and P. A. Scolnik. 1993. cDNA cloning, expression during development, and genome mapping of PSY2, a second tomato gene encoding phytoene synthase. J. Biol. Chem. 268: 25718-25721
  4. Bartley, G. E., P. A. Scolnik, and G. Giuliano. 1994. Molecular biology of carotenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 287-301 https://doi.org/10.1146/annurev.pp.45.060194.001443
  5. Bartley, G. E., P. A. Scolnik, and P. Beyer. 1999. Two Arabidopsis thaliana carotene desaturases, phytoene desaturase and ${\zeta}$-carotene desaturase, expressed in Escherichia coli, catalyze a poly-cis pathway to yield pro-lycopene. Eur. J. Biochem. 259: 396-403 https://doi.org/10.1046/j.1432-1327.1999.00051.x
  6. Boussiba, S. and A. Vonshak. 1991. Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol. 32: 1077-1082 https://doi.org/10.1093/oxfordjournals.pcp.a078171
  7. Boussiba, S. 2000. Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response. Physiol. Plant 108: 111-117 https://doi.org/10.1034/j.1399-3054.2000.108002111.x
  8. Boussiba, S., W. Bing, J. P. Yuan, A. Zarka, and F. Chen. 1999. Changes in pigment profile in the green alga Haematococcus pluvialis exposed to environmental stress. Biotech. Lett. 21: 601-604 https://doi.org/10.1023/A:1005507514694
  9. Bramley, P., C. Teulieres, I. Blain, C. Bird, and W. Schuch. 1992. Biochemical characterization of transgenic tomato plants in which carotenoid synthesis has been inhibited through the expression of antisense RNA to pTOM5. Plant J. 2: 343-349 https://doi.org/10.1111/j.1365-313X.1992.00343.x
  10. Breitenbach, J., N. Misawa, S. Kajiwara, and G. Sanmann. 1996. Expression in E and properties of the carotene ketolase from Haematococcu pluvialis. FEMS Microbiol. Lett. 140: 241-246 https://doi.org/10.1111/j.1574-6968.1996.tb08343.x
  11. Carol, P. and M. Kuntz. 2001. A plastid terminal oxidase comes to light: Implications for carotenoid biosynthesis and chlororespiration. Trends Plant Sci. 6: 31-36 https://doi.org/10.1016/S1360-1385(00)01811-2
  12. Chen, Y., D. Li, W. Lu, W. Xing, B. Hui, and Y. Han. 2003. Screening and characterization of astaxanthin-hyperproducing mutants of Haematococcus pluvialis. Biotechnol. Lett. 25: 527-529 https://doi.org/10.1023/A:1022877703008
  13. Chumpolkulwong, N., T. Kakizono, T. Handa, and N. Nishio. 1997. Isolation and characterization of compactin resistant mutants of an astaxanthin synthesizing green alga Haematococcus pluvialis. Biotech. Lett. 19: 299-302 https://doi.org/10.1023/A:1018330329357
  14. Cunningham, F. X. Jr. and E. Gantt. 2000. Identification of multi-gene families encoding isopentenyl diphosphate isomerase in plants by heterologous complementation in Escherichia coli. Plant Cell Physiol. 41: 119-123 https://doi.org/10.1093/pcp/41.1.119
  15. Cunningham, F. X. Jr. and E. Gantt. 1998. Genes and enzymes of carotenoid biosynthesis in plants. Annu. Rev. Plant Physiol Plant Mol. Biol. 49: 557-583 https://doi.org/10.1146/annurev.arplant.49.1.557
  16. Del Rio, E., F. G. Acien, M. C. Garcia-Malea, J. Rivas, E. Molina-Grima, and M. G. Guerrero. 2005. Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture. Biotechnol. Bioengin. 91: 808-815 https://doi.org/10.1002/bit.20547
  17. Disch, A., J. Schwender, C. Mueller, H. K. Lichtenthaler, and M. Rohmer. 1998. Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochem. J. 333: 381-388 https://doi.org/10.1042/bj3330381
  18. Droop, M. R. 1954. Conditions governing haematochrome formation and loss in the alga Haematocuccus pluvialis Flotow. Arch Mikrobiol. 20: 391-397 https://doi.org/10.1007/BF00690882
  19. Eom, H. S., S. Park, C.-G. Lee, and E. S. Jin. 2005. Gene expression profiling of a eukaryotic microalga, Haematococcus pluvialis. J. Microbiol. Biotech. 15: 1060-1066
  20. Fabregas, J., A. Otero, A. Maseda, and A. Dominguez. 2001. Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. J. Biotechnol. 89: 65-71 https://doi.org/10.1016/S0168-1656(01)00289-9
  21. Fabregas, J., A. Dominguez, M. Regueiro, A. Maseda, and A. Otero. 2000. Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 53: 530-535 https://doi.org/10.1007/s002530051652
  22. Fan, L., A. Vonshak, A. Zarka, and S. Boussiba. 1998. Does astaxanthin protect Haematococcus against light damage? Z. Naturforsch [C] 53: 93-100
  23. Fan, L., A. Vonshak, and S. Boussiba. 1994. Effect of temperature and irradiance on growth of Haematococcus pluvialis (Chlorophyceae). J. Phycol. 30: 829-833 https://doi.org/10.1111/j.0022-3646.1994.00829.x
  24. Fraser, P. D., J. W. Kiano, M. R. Truesdale, W. Schuch, and P. M. Bramley. 1999. Phytoene synthase-2 enzyme activity in tomato does not contribute to carotenoid synthesis in ripening fruit. Plant Mol. Biol. 40: 687-698 https://doi.org/10.1023/A:1006256302570
  25. Fraser, P. D., M. R. Truesdale, C. R. Bird, W. Schuch, and P. M. Bramley. 1994. Carotenoid biosynthesis duringtomato fruit development. Plant Physiol. 105: 405-413 https://doi.org/10.1104/pp.105.1.405
  26. Fraser, P. D., Y. Miura, and N. Misawa. 1997. In vitro characterization of astaxanthin biosynthetic enzymes. J. Biol. Chem. 272: 6128-6135 https://doi.org/10.1074/jbc.272.10.6128
  27. Fraser, P. D., H. Shimada, and N. Misawa. 1998. Enzymic confirmation of reactions involved in routes to astaxanthin formation, elucidated using a direct substrate in vitro assay. Eur. J. Biochem. 252: 229-236 https://doi.org/10.1046/j.1432-1327.1998.2520229.x
  28. Gallagher, C. E., P. D. Matthews, F. Li, and E. T. Wurtzel. 2004. Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses. Plant Physiol. 135: 1776-1783 https://doi.org/10.1104/pp.104.039818
  29. Gann, P. H., J. Ma, E. Giovannucci, W. Willett, F. M. Sacks, C. H. Hennekens, and M. J. Stampfer. 1999. Lower prostate cancer risk in men with elevated plasma lycopene levels: Results of a prospective analysis. Cancer Res. 59: 1225-1230
  30. Giovannucci, E. 1999. Tomatoes, tomato-based products, lycopene, and cancer: Review of the epidemiologic literature. J. Natl. Cancer Inst. 91: 317-331 https://doi.org/10.1093/jnci/91.4.317
  31. Goodwin, T. W. 1980. The Biochemistry of the Carotenoids. Vol. I Plants. 2nd Ed. p. 377. Chapman and Hall, London and New York
  32. Grunewald, K., C. Hagen, and W. Braune. 1997. Secondary carotenoid accumulation in flagellates of the green alga Haematococcus lacustris. Eur. J. Phycol. 32: 387-392 https://doi.org/10.1080/09670269710001737329
  33. Grunewald, K., J. Hirschberg, and C. Hagen. 2001. Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga Haematococcus pluvialis. J. Biol. Chem. 276: 6023-6029 https://doi.org/10.1074/jbc.M006400200
  34. Grunewald, K., M. Eckert, J. Hirschberg, and C. Hagen. 2000. Phytoene desaturase is localized exclusively in the chloroplast and up-regulated at the mRNA level during accumulation of secondary carotenoids in Haematococcus pluvialis (Volvocales, Chlorophyceae). Plant Physiol. 122: 1261-1268 https://doi.org/10.1104/pp.122.4.1261
  35. Guerin, M., M. E. Huntley, and M. Olaizola. 2003. Haematococcus astaxanthin: Applications for human health and nutrition. Trends Biotechnol. 21: 210-216 https://doi.org/10.1016/S0167-7799(03)00078-7
  36. Hagen, C., K. Gruenewald, M. Xylaender, and E. Rothe. 2001. Effect of cultivation parameters on growth and pigment biosynthesis in flagellated cells of Haematococcus pluvialis. J. Appl. Phycol. 13: 79-87 https://doi.org/10.1023/A:1008105909044
  37. Hagen, C., W. Braune, and F. Greulich. 1993. Functional aspects of secondary carotenoids in Haematococcus lacustris [Girod] Rostafinski (Volvocales): IV. Protection from photodynamic damage. J. Photochem. Photobiol. Biol. 20: 153-160 https://doi.org/10.1016/1011-1344(93)80145-Y
  38. Hagen, C., W. Braune, and L. O. Bjorn. 1994. Functional aspects of secondary carotenoids in Haematococcus lacustris [Girod] Rostafinski (Volvocales): III. Action as a 'sunshade.' J. Phycol. 30: 241-248 https://doi.org/10.1111/j.0022-3646.1994.00241.x
  39. Harker, M., A. J. Tsavalos, and A. J. Young. 1996. Factors responsible for astaxanthin formation in the chlorophyte Haematococcus pluvialis. Bioresource Technol. 207-214
  40. Hata, N., J. C. Ogbonna, Y. Hasegawa, H. Taroda, and H. Tanaka. 2001. Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture. J Appl. Phycol. 13: 395-402 https://doi.org/10.1023/A:1011921329568
  41. Hirschberg, J. 2001. Carotenoid biosynthesis in flowering plants. Curr. Opin. Plant Biol. 4: 210-218 https://doi.org/10.1016/S1369-5266(00)00163-1
  42. Hu, Q., M. Sommerfeld, S.-B. Wang, S. F. Chen, G. X. Liu, and Z. Y. Hu. 2003. Proteomics of Haematococcus pluvialis: New opportunities for study of genomics of a non-sequenced species. J. Phycol. 39: 24-25
  43. Isaacson, T., G. Ronen, D. Zamir, and J. Hirschberg. 2002. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants. Plant Cell 14: 333-342 https://doi.org/10.1105/tpc.010303
  44. Jin, E. S., J. E. W. Polle, H. K. Lee, S. M. Hyun, and M. Chang. 2003. Xanthophylls in microalgae: From biosynthesis to biotechnological mass production and application. J. Microbiol. Biotechnol. 13: 165-175 https://doi.org/10.1159/000071867
  45. Kim, J. H., S. W. Kim, C. W. Yun, and H. I. Chang. 2005. Therapeutic effect of astaxanthin isolated from Xanthophyllomyces dendrorhous mutant against naproxeninduced gastric antral ulceration in rats. J. Microbiol. Biotechnol. 15: 633-639
  46. Kobayash, M., T. Kakizono, N. Nishio, S. Nagai, Y. Kurimura, and Y. Tsuji. 1997. Antioxidant role of astaxanthin in the green alga Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 48: 351-356 https://doi.org/10.1007/s002530051061
  47. Kobayashi, M. 2003. Astaxanthin biosynthesis enhanced by reactive oxygen species in the green alga Haematococcus pluvialis. Biotech. Bioproc. Engin. 8: 322-330 https://doi.org/10.1007/BF02949275
  48. Kobayashi, M., T. Kakizono, and S. Nagai. 1993. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl. Envir. Microbiol. 59: 867-873
  49. Kobayashi, M. 2003. Astaxanthin biosynthesis enhanced by reactive oxygen species in the green alga Haematococcus pluvialis. Biotech. Bioproc. Engin. 8: 322-330 https://doi.org/10.1007/BF02949275
  50. Leonard, A., M. Huntley, P. Niiler, and D. Redalje. 1999. Method of control of Haematococcus spp. growth process. US Patent 5882849
  51. Lichtenthaler, H. K. 1999. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 47-65 https://doi.org/10.1146/annurev.arplant.50.1.47
  52. Lichtenthaler, H. K., J. Schwender, A. Disch, and M. Rohmer. 1997. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett. 400: 271-274 https://doi.org/10.1016/S0014-5793(96)01404-4
  53. Linden, H. 1999. Carotenoid hydroxylase from Haematococcus pluvialsis: cDNA sequence, regulation and functional complementation. Biochem. Biophys. Acta 1446: 203-212 https://doi.org/10.1016/S0167-4781(99)00088-3
  54. Mann, V., M. Harker, I. Pecker, and J. Hirschberg. 2000. Metabolic engineering of astaxanthin production in tobacco flowers. Nature Biotech. 18: 882-892 https://doi.org/10.1038/78504
  55. Margalith, P. Z. 1999. Production of ketocarotenoids by microalgae. Appl. Microbiol. Biotechnol. 51: 431-438 https://doi.org/10.1007/s002530051413
  56. Mayer, M. P., V. Nievelstein, and P. Beyer. 1992. Purification and characterization of a NADPH dependent oxidoreductase from chromoplasts of Narcissus pseudonarcissus - a redoxmediator possibly involved in carotene desaturation. Plant Physiol. Biochem. 30: 389-398
  57. Mayne, S. T. 1996. Beta-carotene, carotenoids, and disease prevention in humans. FASEB J. 10: 690-701 https://doi.org/10.1096/fasebj.10.7.8635686
  58. Misawa, N. and H. Shimada. 1997. Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. J. Biotechnol. 59: 169-181 https://doi.org/10.1016/S0168-1656(97)00154-5
  59. Moehs, C. P., L. Tian, K. W. Osteryoung, and D. DellaPenna. 2001. Analysis of carotenoids biosynthetic gene expression during marigold petal development. Plant Mol. Biol. 45: 281-293 https://doi.org/10.1023/A:1006417009203
  60. Norris, S. R., T. R. Barrette, and D. DellaPenna. 1995. Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell 7: 2139-2149 https://doi.org/10.1105/tpc.7.12.2139
  61. Orosa, M., J. F. Valero, C. Herrero, and J. Abalde. 2001. Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions. Biotech. Lett. 23: 1079-1085 https://doi.org/10.1023/A:1010510508384
  62. Orosa, M., T. Franquiera, A. Cid, and J. Abalde. 2001. Carotenoid accumulation in Haematococcus pluvialis in mixotrophic growth. Biotech. Lett. 23: 373-378 https://doi.org/10.1023/A:1005624005229
  63. Palozza, P. and N. I. Krinsky. 1992. Antioxidant effects of carotenoids in vivo and in vitro - an overview. Methods Enzymol. 213: 403-420 https://doi.org/10.1016/0076-6879(92)13142-K
  64. Park, E. K. and C.-G. Lee. 2001. Astaxanthin production by Haematococcus pluvialis under various light intensities and wavelengths. J. Microbiol. Biotechnol. 11: 1024-1030
  65. Pulz, O. and W. Gross. 2004. Valuable products from biotechnology of microalgae Appl. Microbiol. Biotechnol. 65: 635-648 https://doi.org/10.1007/s00253-004-1647-x
  66. Ronen, G., L. Carmel-Goren, D. Zamir, and J. Hirschberg. 2000. An alternative pathway to ${\beta}$-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc. Natl. Acad. Sci. USA 97: 11102-11107
  67. Sarada, R., S. Bhattacharya, S. Bhattacharya, and G. A. Ravishankar. 2002. A response surface approach for the production of natural pigment astaxanthin from green alga, Haematococcus pluvialis: Effect of sodium acetate, culture age, and sodium chloride. Food Biotech. 16: 107-120 https://doi.org/10.1081/FBT-120014322
  68. Sarada, R., U. Tripathi, and G. A. Ravishankar. 2002. Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions. Process Biochem. 37: 623-627 https://doi.org/10.1016/S0032-9592(01)00246-1
  69. Schoefs, B., N. Rmiki, J. Rachadi, and Y. Lemoine. 2001. Astaxanthin accumulation in Haematococcus requires a cytochrome P450 hydroxylase and an active synthesis of fatty acids. FEBS Lett. 5003: 125-128
  70. Schwender, J., C. Gemuenden, and H. K. Lichtenthaler. 2001. Chlorophyta exclusively use the 1-deoxyxylulose-5- phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta 212: 416-423 https://doi.org/10.1007/s004250000409
  71. Shelton, D. A., D. N. Leach, and R. J. Henry. 2004. Isopentenyl pyrophosphate isomerases from Melaleuca alternifolia (Cheel) and their role in isoprenoid biosynthesis. J. Horticult. Sci. Biotech. 79: 289-292 https://doi.org/10.1080/14620316.2004.11511762
  72. Shewmaker, C. K., J. A. Sheehy, M. Daley, S. Colburn, and D. Y. Ke. 1999. Seed specific overexpression of phytoene synthase: Increase in carotenoids and other metabolic effects. Plant J. 20: 401-412 https://doi.org/10.1046/j.1365-313x.1999.00611.x
  73. Steinbrenner, J. and H. Linden. 2001. Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant Physiol. 125: 810-817 https://doi.org/10.1104/pp.125.2.810
  74. Steinbrenner, J. and H. Linden. 2003. Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: Regulation by photosynthetic redox control. Plant Mol. Biol. 52: 343-356 https://doi.org/10.1023/A:1023948929665
  75. Sun, Z., E. Gantt, and F. X. Jr. Cunningham. 1996. Cloning and functional analysis of the ${\beta}$-carotene hydroxylase of Arabidopsis thaliana. J. Biol. Chem. 271: 24349-24352 https://doi.org/10.1074/jbc.271.40.24349
  76. Sun, Z., F. X. Jr. Cunningham, and E. Gantt. 1998. Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte. Proc. Natl. Acad. Sci. USA 95: 11482-11488
  77. Wang, B., A. Zarka, A. Trebst, and S. Boussiba. 2003. Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. J. Phycol. 39: 1116-1124 https://doi.org/10.1111/j.0022-3646.2003.03-043.x
  78. Wang, C. W., M. K. Oh, and J. C. Liao. 1999. Engineered isoprenoid pathway enhance astaxathin production in Escherichia coli. Biotechnol. Bioeng. 62: 235-241 https://doi.org/10.1002/(SICI)1097-0290(19990120)62:2<235::AID-BIT14>3.0.CO;2-U
  79. Wang, S.-B., F. Chen, M. Sommerfeld, and Q. Hu. 2004. Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta 220: 17-29 https://doi.org/10.1007/s00425-004-1323-5
  80. Yan, Y., Y. Zhu, J. G. Jiang, and D. L. Song. 2005. Cloning and sequence analysis of the phytoene synthase gene from a unicellular chlorophyte, Dunaliella salina. J. Agric. Food Chem. 53: 1466-1469 https://doi.org/10.1021/jf048358s
  81. Yong, Y. Y. R. and Y. K. Lee. 1991. Do carotenoids play a photoprotective role in the cytoplasm of Haematococcus lacustris (Chlorophyta). Phycologia 30: 257-261 https://doi.org/10.2216/i0031-8884-30-3-257.1
  82. Yuan, J. P. and F. Chen. 1999. Hydrolysis kinetics of astaxanthin esters and stability of astaxanthin of Haematococcus pluvialis during saponification. J. Agric. Food Chem. 47: 31-35 https://doi.org/10.1021/jf980465x
  83. Zhekisheva, M., S. Boussiba, I. Khozin-Goldberg, A. Zarka, and Z. Cohen. 2002. Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J. Phycol. 38: 325-331 https://doi.org/10.1046/j.1529-8817.2002.01107.x
  84. Zhu, Y. H., J. G. Jiang, Y. Yan, and X. W. Chen. 2005. Isolation and characterization of phytoene desaturase cDNA involved in the ${\beta}$-carotene biosynthetic pathway in Dunaliella salina. J. Agric. Food Chem. 53: 5593-5597 https://doi.org/10.1021/jf0506838
  85. Zlotnik, S. I., A. Sukenik, and Z. Dubinsky. 1993. Physiological and photosynthetic changes during the formation of red aplanospores in the Chlorophyte Haematococcus pluvialis. J. Phycol. 29: 463-469 https://doi.org/10.1111/j.1529-8817.1993.tb00147.x