Structure and Bacterial Cell Selectivity of a Fish-Derived Antimicrobial Peptide, Pleurocidin

  • Yang Ji-Young (Department of Advanced Fusion Technology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Shin Song-Yub (Department of Bio-Materials, Graduate School and Research Center for Proteineous Materials, Chosun University) ;
  • Lim Shin-Saeng (Department of Bio-Materials, Graduate School and Research Center for Proteineous Materials, Chosun University) ;
  • Hahm Kyung-Soo (Department of Bio-Materials, Graduate School and Research Center for Proteineous Materials, Chosun University) ;
  • Kim Yang-Mee (Department of Advanced Fusion Technology, Bio/Molecular Informatics Center, Konkuk University)
  • Published : 2006.06.01

Abstract

Pleurocidin, an $\alpha$-helical cationic antimicrobial peptide, was isolated from skin mucosa of winter flounder (Pleuronectes americamus). It had strong antimicrobial activities against Gram-positive and Gram-negative bacteria, but had very weak hemolytic activity. The Gly$^{13,17}\rightarrow$Ala analog (pleurocidin-AA) showed similar antibacterial activities, but had dramatically increased hemolytic activity. The bacterial cell selectivity of pleurocidin was confirmed through the membrane-disrupting and membrane-binding affinities using dye leakage, tryptophan fluorescence blue shift, and tryptophan quenching experiments. However, the non-cell-selective antimicrobial peptide, pleurocidin-AA, interacts strongly with both negatively charged and zwitterionic phospholipid membranes, the latter of which are the major constituents of the outer leaflet of erythrocytes. Circular dihroism spectra showed that pleurocidin-AA has much higher contents of $\alpha$-helical conformation than pleurocidin. The tertiary structure determined by NMR spectroscopy showed that pleurocidin has a flexible. structure between the long helix from $Gly^3$ to $Gly^{17}$ and the short helix from $Gly^{17}$ to $Leu^{25}$. Cell-selective antimicrobial peptide pleurocidin interacts strongly with negatively charged phospholipid membranes, which mimic bacterial membranes. Structural flexibility between the two helices may play a key role in bacterial cell selectivity of pleurocidin.

Keywords

References

  1. Bax, A. and D. G. Davis. 1985. Practical aspects of twodimensional transverse NOE spectroscopy. J. Magn. Reson. 63: 207-213
  2. Bax, A. and D. G. Davis. 1985. MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J. Magn. Reson. 65: 355-360
  3. Baxter, N. J. and M. P. Williamson. 1997. Temperature dependence of 1H chemical shifts in proteins. J. Biomol. NMR 9: 359-369 https://doi.org/10.1023/A:1018334207887
  4. Brunger, A. T. 1993. X-PLOR Manual, Version 3.1. Yale University, New Haven, CT
  5. Clore, G. M. and A. M. Gronenborn. 1989. Determination of three-dimensional structures of proteins and nucleic acids in solution by nuclear magnetic resonance spectroscopy. Crit. Rev. Biochem. Mol. Biol. 24: 479-564 https://doi.org/10.3109/10409238909086962
  6. Clore, G. M. and A. M. Gronenborn. 1994. Structures of larger proteins, protein-ligand and protein-DNA complexes by multidimensional heteronuclear NMR. Protein Sci. 3: 372-390 https://doi.org/10.1002/pro.5560030302
  7. Clore, G. M., A. M. Gronenborn, M. Nilges, and C. A. Ryan. 1987. Three-dimensional structure of potato carboxypeptidase inhibitor in solution. A study using nuclear magnetic resonance, distance geometry, and restrained molecular dynamics. Biochemistry 26: 8012-8023 https://doi.org/10.1021/bi00398a069
  8. Cole, A. M., R. O. Darouiche, D. Legarda, N. Connell, and G. Diamond. 2000. Characterization of a fish antimicrobial peptide: Gene expression, subcellular localization, and spectrum of activity. Antimicrob. Agents Chemother. 44: 2039-2045 https://doi.org/10.1128/AAC.44.8.2039-2045.2000
  9. Cole, A. M., P. Weis, and G. Diamond. 1997. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J. Biol. Chem. 272: 12008-12013 https://doi.org/10.1074/jbc.272.18.12008
  10. Derome, A. and M. Williamson. 1990. Rapid-pulsing artifacts in double-quantum-filtered COSY. J. Magn. Reson. 88: 177-185
  11. Fukuaka, Y., Y. Matsushita, S. Furukawa, T. Niidome, T. Hatakeyama, and H. Aoyagi. 2003. Structure-activity relationship of model peptides based on pleurocidin, an antibacterial peptide. Chem. Soc. Jpn 76: 1857-1861 https://doi.org/10.1246/bcsj.76.1857
  12. Holak, T. A., A. Engstrom, P. J. Kraulis, G. Lindeberg, H. Bennich, T. A. Jones, A. M. Gronenborn, and G. M. Clore. 1988. The solution conformation of the antibacterial peptide cecropin A: A nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry 27: 7620-7629 https://doi.org/10.1021/bi00420a008
  13. Hwang, Y. H., Y. I. Matsushita, K. Sugamoto, and T. Matsui. 2005. Antimicrobial effect of the wood vinegar from Cryptomeria japonica sapwood on plant pathogenic microorganisms. J. Microbiol. Biotechnol. 15: 1106-1110
  14. Jam, P. P., J. Y. Je, H. G. Byun, S. H. Moon, and S. K. Kim. 2004. Antimicrobial activity of hetero-chitosans and their oligosaccharides with different molecular weights. J. Microbiol. Biotechnol. 14: 317-324 https://doi.org/10.1159/000082843
  15. Kim, H., S. J. Kim, S. N. Park, and J. W. Oh. 2004. Antiviral effect of amphotericin B on Japanese encephalitis virus replication. J. Microbiol. Biotechnol. 14: 121-127 https://doi.org/10.1159/000078104
  16. De Kroon, A. I., M. W. Soekarjo, J. De Gier, and B. De Kruijff. 1990. The role of charge and hydrophobicity in peptide-lipid interaction: A comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers. Biochemistry 29: 8229-8240 https://doi.org/10.1021/bi00488a006
  17. Kuszewski, J., M. Nilges, and A. T. Brünger. 1992. Sampling and efficiency of metric matrix distance geometry: A novel partial metrization algorithm. J. Biomol. NMR 2: 33-56 https://doi.org/10.1007/BF02192799
  18. Lee, D. G., Z. Z. Jin, C. Y. Maeng, S. Y. Shin, M. Y. Seo, K. L. Kim, and K. S. Hahm. 1999. Antifungal mechanism of antifungal peptide derived from cecropin A(1-8)-melittin(1-12) hybrid against Aspergillus fumigatus. J. Microbiol. Biotechnol. 9: 168-172
  19. Lee, D. G., S. Y. Shin, K. L. Kim, K. S. Hahm, J. H. Kang, and Z. Z. Jin. 1998. Structure-antifungal activity relationships of cecropin A-magainin2 and cecropin A-melittin hybrid peptides on pathogenic fungal cells. J. Microbiol. Biotechnol. 8: 595-600
  20. Lee, D. G., S. Y. Shin, S. G. Lee, K. L. Kim, M. K. Lee, and K. S. Hahm. 1997. Antifungal activities of magainin-2 hybrid peptides against Trichosporon beigelii. J. Microbiol. Biotechnol. 7: 49-51
  21. Lee, H. W., J. W. Choi, H. W. Kim, D. P. Han, W. S. Shin, and D. H. Yi. 1997. A peptide antibiotic AMRSA1 active against multidrug-resistant Staphylococcus aureus produced by Streptomyces sp. HW-003. J. Microbiol. Biotechnol. 7: 402-408
  22. Lim, S. S., Y. M. Song, M. H. Jang, Y. Kim, K.-S. Hahm, and S. Y. Shin. 2004. Effects of two glycine residues in positions 13 and 17 of pleurocidin on structure and bacterial cell selectivity. Protein Pept. Lett. 11: 35-40 https://doi.org/10.2174/0929866043478383
  23. Macura, S. and R. R. Ernst. 1980. Elucidation of crossrelaxation in liquids by two-dimensional NMR spectroscopy. Mol. Phys. 41: 95-117 https://doi.org/10.1080/00268978000102601
  24. Mao, D. and B. A. Wallace. 1984. Differential light scattering and absorption flattening optical effects are minimal in the circular dichroism spectra of small unilamellar vesicles. Biochemistry 23: 2667-2673 https://doi.org/10.1021/bi00307a020
  25. Marchini, D., P. C. Giordano, R. Amons, L. F. Bernini, and R. Dallai. 1993. Purification and primary structure of ceratotoxin A and B, two antibacterial peptides from the female reproductive accessory glands of the medfly Ceratitis capitata (Insecta:Diptera). Insect Biochem. Mol. Biol. 23: 591-598 https://doi.org/10.1016/0965-1748(93)90032-N
  26. Marion, D. and K. Wuthrich. 1983. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of $^1H-^1H$ spin-spin coupling constants in proteins. Biochem. Biophys. Res. Commun. 113: 967-974 https://doi.org/10.1016/0006-291X(83)91093-8
  27. Matsuzaki, K., O. Murase, N. Fujii, and K. Miyajima. 1996. An antimicrobial peptide, magainin 2, induced rapid flipflop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35: 11361-11368 https://doi.org/10.1021/bi960016v
  28. Mor, A., V. H. Nguyen, A. Delfour, D. Migliore-Samour, and P. Nicolas. 1991. Isolation, amino acid sequence, and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin. Biochemistry 30: 8824-8830 https://doi.org/10.1021/bi00100a014
  29. Muller, L. 1987. P.E.COSY, a simple alternative to E.COSY, J. Magn. Reson. 72: 191-197
  30. Nilges, M., G. M. Clore, and A. M. Gronenborn. 1988. Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometrydynamical simulated annealing calculations. FEBS Lett. 229: 317-324 https://doi.org/10.1016/0014-5793(88)81148-7
  31. Oh, D., S. Y. Shin, S. Lee, J. H. Kang, S. D. Kim, P. D. Ryu, K.-S. Hahm, and Y. Kim. 2000. Role of the hinge region and the tryptophan residue in the synthetic antimicrobial peptides, cecropin A(1-8)-magainin 2(1-12) and its analogues, on their antibiotic activities and structures. Biochemistry 39: 11855-11864 https://doi.org/10.1021/bi000453g
  32. Oh, S. U., B. S. Yun, S. J. Lee, and I. D. Yoo. 2005. Structures and biological activities of novel antibiotic peptaibols neoatroviridins A-D from Trichoderma atroviride F80317. J. Microbiol. Biotechnol. 15: 384-388
  33. Patrzykat, A., C. L. Friedrich, L. Zhang, V. Mendoza, and R. E. W. Hancock. 2002. Sublethal concentrations of pleurocidinderived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob. Agents Chemother. 46: 605-614 https://doi.org/10.1128/AAC.46.3.605-614.2002
  34. Saint, N., H. Cadiou, Y. Bessin, and G. Molle. 2002. Antibacterial peptide pleurocidin forms ion channels in planar lipid bilayers. Biochim. Biophys. Acta 1564: 359-364 https://doi.org/10.1016/S0005-2736(02)00470-4
  35. Sawai, M. V., A. J. Waring, W. R. Kearney, P. B. McCray, Jr., W. R. Forsyth, R. I. Lehrer, and B. F. Tack. 2002. Impact of single-residue mutations on the structure and function of ovispirin/novispirin antimicrobial peptides. Protein Eng. 15: 225-232 https://doi.org/10.1093/protein/15.3.225
  36. Shai, Y., D. Bach, and A. Yanovsky. 1990. Channel formation properties of synthetic pardaxin and analogues. J. Biol. Chem. 265: 20202-20209
  37. Shin, S. Y., J. H. Kang, S. Y. Jang, Y. Kim, K. L. Kim, and K.-S. Hahm. 2000. Effects of the hinge region of cecropin A(1-8)-magainin 2(1-12), a synthetic antimicrobial peptide, on liposomes, bacterial and tumor cells. Biochim. Biophys. Acta 1463: 209-218 https://doi.org/10.1016/S0005-2736(99)00212-6
  38. Syvitski, R. T., I. Burton, N. R. Mattatall, S. E. Douglas, and D. L. Jakeman. 2005. Structural characterization of the antimicrobial peptide pleurocidin from winter flounder. Biochemistry 44: 7282-7293 https://doi.org/10.1021/bi0504005
  39. Wishart, D. S., B. D. Sykes, and F. M. Richards. 1992. The chemical shift index: A fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31: 1647-1651 https://doi.org/10.1021/bi00121a010
  40. Wuthrich, K. 1986. NMR of Protein and Nucleic Acid. Wiley-Interscience, New York, U.S.A
  41. Wuthrich, K., M. Billeter, and W. Braun. 1983. Pseudostructures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J. Mol. Biol. 169: 949-961 https://doi.org/10.1016/S0022-2836(83)80144-2
  42. Yu, K., K. Park, S. W. Kang, S. Y. Shin, K.-S. Hahm, and Y. Kim. 2002. Solution structure of a cathelicidin-derived antimicrobial peptide, CRAMP, as determined by NMR spectroscopy. J. Pept. Res. 60: 1-9 https://doi.org/10.1034/j.1399-3011.2002.01968.x