The Effect of Glass Fiber and Coupling Agents in the Blends of Silicone Rubber and Liquid Crystalline Polymers

  • Das T. (Materials Science Centre, Indian Institute of Technology) ;
  • Banthia A.K. (Materials Science Centre, Indian Institute of Technology) ;
  • Adhikari B. (Materials Science Centre, Indian Institute of Technology) ;
  • Jeong Hye-Won (Department of Polymer Science and Engineering, Pusan National University) ;
  • Ha Chang-Sik (Department of Polymer Science and Engineering, Pusan National University) ;
  • Alam S. (Defence Materials and Stores Research and Development Establishment)
  • Published : 2006.06.01

Abstract

Blends of silicone rubber (VMQ) and liquid crystalline polymer (LCP) were prepared using a melt blending technique in the presence and absence of glass fiber and coupling agents. The effect of glass fiber and coupling agents on the thermal, dynamic mechanical, morphological pro-perties and cure characteristics of VMQ/LCP blends were studied. The vinyl silane coupling agent showed a significant effect on the above mentioned properties of VMQ/LCP blends by reacting at the interface between VMQ and LCP. The viscosity of the VMQ/LCP blends decreased with the addition of a coupling agent. A substantial improvement in storage modulus of VMQ/LCP blends was observed in the presence of glass fiber and coupling agents. However, as a coupling agent vinyl silane proved to be better than amine for the VMQ/LCP-glass-containing blends. The thermal stability of the pure silicone rubber was higher than those of the blends. This high thermal stability of silicone rubber was attributed to the Si-O-Si bonds. However, the thermal stability of the blends decreased further in the presence of a coupling agent, possibly due to a decrease in blend crystallinity.

Keywords

References

  1. S. K. Sharma, A. Tendolkar, and A. Misra, Molec. Cryst. Liq. Cryst., 157, 597 (1988) https://doi.org/10.1080/00268948808080258
  2. S. Bhattacharya, K. A. Tendolkar, and A. Misra, Molec. Cryst. Liq. Cryst., 153, 501 (1987) https://doi.org/10.1080/00268948708074561
  3. M. Pracella, E. Chiellini, and D. Dainelli, Macromol. Chem., 190, 175 (1989) https://doi.org/10.1002/macp.1989.021900119
  4. D. Dutta, H. Fruitwala, A. Kholi, and R. A. Weiss, Polym. Eng. Sci., 30, 1005 (1990) https://doi.org/10.1002/pen.760301704
  5. M. Garcia, J. I. Eguiazabal, and J. Nazabal, Polym. Compo., 6, 686 (2003)
  6. A. I. Isayev and M. Modic, Polym. Compos., 8, 158 (1987) https://doi.org/10.1002/pc.750080103
  7. K. G. Blizard and D. G. Baird, Polym. Eng. Sci., 27, 653 (1987) https://doi.org/10.1002/pen.760270909
  8. G. Kiss, Polym. Eng. Sci., 27, 410 (1987) https://doi.org/10.1002/pen.760270606
  9. R. A. Weiss, W. Huh, and L. Nicolais, Polym. Eng. Sci., 27, 864 (1987)
  10. F. P. La Mantia, A. Valenza, P. L. Magagnini, and M. Paci, Polym. Eng. Sci., 30, 7 (1990) https://doi.org/10.1002/pen.760300103
  11. F. P. La Mantia, A. Valenza, and P. L. Magagnini, J. Appl. Polym. Sci., 44, 1257 (1992) https://doi.org/10.1002/app.1992.070440715
  12. S. Rabiej, B. Ostrowska-Gumkowska, and A. Wlochowicz, Eur. Polym. J., 33, 1031 (1997) https://doi.org/10.1016/S0014-3057(96)00298-4
  13. Y. Seo and K. U. Kim, Polym. Eng. Sci., 38, 596 (1998) https://doi.org/10.1002/pen.10223
  14. E. Shivakumar, K. N. Pandey, S. Alam, G. N. Mathur, and C. K. Das, Macromol. Res., 13, 81 (2005) https://doi.org/10.1007/BF03219019
  15. H. J. Sang and S. K. Bong, Polym. Eng. Sci., 35, 6 (1995)
  16. J, W. Lee, S. H. Joo, and J. I. Jin, Macromol. Res., 12, 195 (2004) https://doi.org/10.1007/BF03218388