DOI QR코드

DOI QR Code

Non-statistical Stochastic Finite Element Method Employing Higher Order Stochastic Field Function

고차의 추계장 함수와 이를 이용한 비통계학적 추계론적 유한요소해석

  • 노혁천 (한국콘크리트학회 부설 콘크리트공학연구소)
  • Received : 2005.11.08
  • Accepted : 2006.01.20
  • Published : 2006.03.30

Abstract

In this paper, a stochastic field that is compatible with Monte Carlo simulation is suggested for an expansion-based stochastic analysis scheme of weighted integral method. Through investigation on the way of affection of stochastic field function on the displacement vector in the series expansion scheme, it is noticed that the stochastic field adopted in the weighted integral method is not compatible with that appears in the Monte Carlo simulation. As generally recognized in the field of stochastic mechanics, the response variability is not a linear function of the coefficient of variation of stochastic field but a nonlinear function with increasing variability as the intensity of uncertainty is increased. Employing the stochastic field suggested in this study, the response variability evaluated by means of the weighted integral scheme is reproduced with high precision even for uncertain fields with moderately large coefficient of variation. Besides, despite the fact that only the first-order expansion is employed, an outstanding agreement between the results of expansion-based weighted integral method and Monte Carlo simulation is achieved.

본 연구에서는 급수전개를 이용한 추계론적 유한요소해석법의 개선을 위한 등가몬테카를로 추계장함수를 제안하고 1차 Taylor전개를 이용한 추계론적 유한요소해석법인 가중적분법에 적용하였다. 일반적으로 1차 Taylor전개를 이용하는 수치해석법에서의 응답변화도는 고려하고 있는 추계장의 분산계수에 대하여 선형거동을 보인다. 그러나 몬테카를로 해석의 경우 추계장 분산계수에 대하여 비선형 거동을 나타낸다. 이는 급수전개법의 1차 Taylor전개에 따른 선형특성에 기인한다. 따라서, 가중적분법에서 사용되는 Taylor전개된 변위벡터와 몬테카를로 해석에서의 변위벡터를 비교하고 이들 두 변위벡터 사이에 상호 불일치 하는 점을 고찰하여 몬테카를로 해석에서의 변위벡터와 등가의 변위벡터를 구성하고 이를 가중적분법에 적용하였다. 제안한 등가몬테카를로 추계장은 본래의 추계장 함수에 대한 고차함수로 주어진다. 평면구조에 대한 수치해석을 통하여 제안한 등가몬테카를로 추계장을 이용한 정식화의 타당성을 고찰하였다 새로운 정식화는 기존의 l차 가중적분법을 위한 정식화 과정과 유사하게 수행할 수 있었다.

Keywords

References

  1. 노혁천, 송명관(2004) 비선형 형태를 가지는 재료상수의 공간적 불확실성에 의한 평면구조의 응답변화도 해석을 위한 정식화, 대한토목학회논문집, 대한토목학회, 제24권 저15A호, pp. 885-894
  2. 최창근, 노혁천(1993) 사변형 요소를 이용한 추계론적 유한요소 해석, 대한토목학회논문집, 대한토목학회, 제13권 제5호, pp. 29-37
  3. Bhattacharyya, B., Chakraborty, S. (2002) NE-MCS technique for stochastic structural response sensitivity, Computer Methods in Applied Mechanics in Engineering, Vol. 191, No. 49-50, pp. 5631-5646
  4. Choi, C.K. and Noh H.C. (1996) Stochastic finite element analysis of plate structures by weighted integral method, Structural Engineering and Mechanics, An International Journal, Vol. 4, No.6, pp. 703-715 https://doi.org/10.12989/sem.1996.4.6.703
  5. Choi, C.K. and Noh, H.C. (2000) Weighted integral SFEM including higher order terms, Journal of Engineering Mechanics-ASCE, Vol. 126, No.8, pp. 859-866 https://doi.org/10.1061/(ASCE)0733-9399(2000)126:8(859)
  6. Deodatis, G. (1996) Simulation of ergodic multivariate stochastic processes, Journal of Engineering Mechanics-ASCE, Vol. 122, No.8, pp. 778-787 https://doi.org/10.1061/(ASCE)0733-9399(1996)122:8(778)
  7. Deodatis, G.L. Graham-Brady and Micaletti, R. (2003) A hierarchy of upper bounds on the response of stochastic systems with large variation of their properties: random variable case, Probabilistic Engineering Mechanics, Vol. 18, No.4, pp. 349-363 https://doi.org/10.1016/j.probengmech.2003.08.001
  8. Deodatis G, Micaletti R.C. (2001) Simulation of highly skewed non-Gaussian stochastic processes, Journal of Engineering Mechanics-ASCE, Vol. 127, No. 12, pp. 1284-1295 https://doi.org/10.1061/(ASCE)0733-9399(2001)127:12(1284)
  9. Ghanem R, Spanos P. (1991) Stochastic Finite Elements: A Spectral Approach. Springer: New York
  10. Graham, L. and Deodatis, G. (1998) Variability response functions for stochastic plate bending problems, Structural Safety, Vol. 20, pp. 167-188 https://doi.org/10.1016/S0167-4730(98)00006-X
  11. Koutsourelakis, P.S., Deodatis G. (2005) Simulation of binary random fields with applications to two-phase random media, Journal of Engineering Mechanics-ASCE, Vol. 131, No.4, pp. 397-412 https://doi.org/10.1061/(ASCE)0733-9399(2005)131:4(397)
  12. Lin, Y.K. (1967) Probabilistic Theory of Structural Dynamics. McGraw-Hill Book Company, New York
  13. Micaletti, R.C. (2000) Direct generation of non-Gaussian weighted integrals, Journal of Engineering Mechanics-ASCE, Vol. 126. No.1, pp. 66-75 https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(66)
  14. Noh, H.C. (2004) A Formulation for stochastic finite element analysis of plate structures with uncertain poisson's ratio, Computer Methods in Applied Mechanics and Engineering, Vol. 193, No. 45-47, pp. 4857-4873
  15. Noh, H.C. (2005a) Extension of weighted integral stochastic finite element method to the analysis of semi-infinite domain, Journal of Engineering Mechanics - ASCE, Vol. 131, No.5, pp. 550-556 https://doi.org/10.1061/(ASCE)0733-9399(2005)131:5(550)
  16. Noh, H.C. (2005b) Stochastic behavior of mindlin plate with uncertain geometrical and material parameters and their correlation, Probabilistic Engineering Mechanics, Vol. 20, No.4, pp. 296-306 https://doi.org/10.1016/j.probengmech.2005.06.001
  17. Papadopoulos V, Deodatis G, Papadrakakis M (2005) Flexibility-based upper bounds on the response variability of simple beams, Computer Methods in Applied Mechanics and Engineering, Vol. 194, No. 12-16, pp. 1385-1404 https://doi.org/10.1016/j.cma.2004.06.040
  18. Sakamoto S., Ghanem R. (2002) Polynomial chaos decomposition for the simulation of non-Gaussian nonstationary stochastic processes, Journal of Engineering Mechanics-ASCE, Vol. 128, No.2, pp. 190-201 https://doi.org/10.1061/(ASCE)0733-9399(2002)128:2(190)
  19. Schueller, G.I. (2001) Computational stochastic mechanics-recent advances, Computers and Structures, Vol. 79, pp. 2225-2234 https://doi.org/10.1016/S0045-7949(01)00078-5
  20. Shinozuka, M. and Yamazaki, F. (1995) Stochastic finite element analysis: an introduction, In Stochastic Structural Dynamics, eds. S.T. Ariaratnam, G.I. Schueller and I. Elishakoff. Elsevier Applied Science Publishers Ltd
  21. Spanos, P.D. and Ghanem, R. (1989) Stochastic finite element expansion for random media, Journal of Engineering Mechanics-ASCE, Vol. 115, No.5
  22. Takada T. (1990) Weighted integral method in stochastic finite element analysis, Probabilistic Engineering Mechanics, Vol. 5, No.3, pp. 146-156 https://doi.org/10.1016/0266-8920(90)90006-6
  23. Yamazaki, F., Shinozuka, M. and Dasgupta, G. (1988) Neumann expansion for stochastic finite element analysis, Journal of Engineering Mechanics, Vol. 114, No.8, pp. 1335-1355 https://doi.org/10.1061/(ASCE)0733-9399(1988)114:8(1335)