DOI QR코드

DOI QR Code

Undrained Shear Behavior of Cemented Sand

고결모래의 비배수 전단거동

  • 이문주 (고려대학교 공과대학 대학원 사회환경시스템공학과) ;
  • 최성근 (고려대학교 공과대학 대학원 사회환경시스템공학과) ;
  • 홍성진 (고려대학교 공과대학 대학원 사회환경시스템공학과) ;
  • 이우진 (고려대학교 공과대학 사회환경시스템공학과)
  • Received : 2006.01.06
  • Accepted : 2006.04.01
  • Published : 2006.05.31

Abstract

The behavior of artificially cemented sands were investigated by undrained triaxial test of isotropically consolidated sample. The cementation were induced by gypsum that is generally used for the aitificial cementation of sands. The gypsum of 5~20%(sand weight) were included in the sand and cured in the mold under the overburden pressure 55kPa. The yielding strength and stiffness of cemented sand were increased as the degree of cementation. And the dilation of sand was restricted by the cementation bonds, but after breakage of the bonds, it was increased more abrupt than the uncemented sands. The effective stress path showed that the aspects of effective pore water pressure were changed as the degree of cementation and the relative density. The effective stress ratio of cemented sand in the phase transformation line and the failure line were changed by the cementation. Generally the behavior of cemented sand more influenced by the degree of cementation than the relative density.

본 연구에서는 석고함유율을 달리한 고결된 모래 시료를 조성하여 고결정도 및 상대밀도에 따른 고결모래의 거동양상을 분석하였다. 상대밀도 25, 40, 60%의 모래에 모래중량비 5~20%의 석고를 혼합하여 교반시킨 후 상재하중 55kPa 상태에서 양생하여 시료를 조성하였다. 조성된 고결시료는 일정한 구속압(200kPa)상태에서 비배수 전단시험(CIU)이 실시되었다. 실험 결과 고결정도의 증가에 따른 고결된 모래의 항복강도 및 강성의 증가양상을 확인하였고, 고결 결합이 파괴되기 전에는 다일레이션 경향이 억제되지만, 결합이 파괴된 직후 다일레이션 경향이 오히려 증가하는 것으로 나타났다. 또한 고결정도 및 상대밀도에 따라 간극수압 발생경향이 변하였으며, 고결에 의해 상전이선 및 파괴포락선에서의 유효응력비가 변하는 것을 유효응력경로 분석을 통하여 확인하였다. 일반적으로 상대밀도에 비해 고결정도가 고결된 모래의 거동에 더 큰 영향을 끼치는 것으로 나타났다.

Keywords

References

  1. 김영수, 김대만(2004) Aging 효과에 따른 모래의 비배수 정적전단거동 특성, 한국지반공학회논문집, 한국지반공학회, 제 20권6호, pp. 137-150
  2. Airey, D.W. (1993) Triaxial testing of naturally cemented carbonate soil, J. Geotech. Engrg., ASCE, Vol. 119, No.9, pp. 1379-1398 https://doi.org/10.1061/(ASCE)0733-9410(1993)119:9(1379)
  3. Baig, B., Picornell, M., and Nazarian, S. (1997), Low strain shear moduli of cemented sands, J Geotech. Engrg., ASCE, Vol. 123, No.6, pp. 540-545 https://doi.org/10.1061/(ASCE)1090-0241(1997)123:6(540)
  4. Clough, W.G., Iwabuchi, J., Rad. N.S., and Kuppusamy, T. (1989) Influence of cementation on the liquefaction of sands, J. Geotech. Engrg., ASCE, Vol. 115, No.8, pp. 1102-1117 https://doi.org/10.1061/(ASCE)0733-9410(1989)115:8(1102)
  5. Clough, W.G., Sitar, N., and Bachus, R. (1981) Cemented sands under static loading, J. Geotech. Engrg., Div., ASCE, Vol. 107, No.6, pp. 799-817
  6. Coop, M.R. and Atkinson, J.H. (1993) The mechanics of cemented carbonate sands, Geotechnique, Vol. 43, No. 1, pp. 53-67 https://doi.org/10.1680/geot.1993.43.1.53
  7. Cuccovillo, T. and Coop, M.R. (1999) On the mechanics of structured sands, Geotechnique, Vol. 49, No.6, pp. 741-760 https://doi.org/10.1680/geot.1999.49.6.741
  8. Huang, J.T. and Airey, D.W (1993) Effects of cement and density on an artificially cemented sand, Geotechnical Engineering of Hard Soils-Soft Rocks, A. Anagnostopoulous et al., Eds. Vol. 1, pp. 553-560
  9. Huang, J.T. and Airey, D.W. (1998) Properties of artificially cemented carbonate sand, J. Geotech. Engrg., ASCE, Vol. 124, No.6, pp. 492-499 https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(492)
  10. Ismael, N.F. (2000) Influence of artificial cementation on the properties of Kuwaiti sands, Kuwait J. Sci. Eng., Vol. 27, pp. 59-75
  11. Ismail, M.A., Joer, H.A., and Randolph, M.F. (2002a) Cementation of porous materials using calcite, Geotechnique, Vol. 52, No.5, pp. 313-324 https://doi.org/10.1680/geot.52.5.313.38709
  12. Ismail, M.A., Joer, H.A., Sim, W.H., and Randolph. M.E (2002b) Effect of cement type on shear behavior of cemented calcareous soil, J. Geotech. Engrg., ASCE, Vol. 128, No.6, pp. 520-529 https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(520)
  13. Kavvadas, M.J. and Anagnostopoulos, A.G. (1993) A framework for the mechanical behaviour of structured soils, Proceedings of international symposium on geotechnical engineering of hard soils-soft rocks, Greece, Vol. 1, pp. 591-601
  14. Leroueil, S. and Vaughan, P.R. (1990) The general congruent effects of structure in natural soils and weak rocks, Geotechnique, Vol.40, No.3, pp. 467-488 https://doi.org/10.1680/geot.1990.40.3.467
  15. Miura, S. and Toki, S. (1982) Sample Preparation method and its effect on static and cyclic deformation-strength properties of sand, Soils and Foundations, Vol. 22, No. 1, pp. 61-77 https://doi.org/10.3208/sandf1972.22.61
  16. Schnail, E, Prietto, P.D.M., and Consoli, N.C. (2001) Characterization of cemented sand in triaxial compression, J. Geotech. Engrg., ASCE, Vol. 127, No. 10, pp. 857-868 https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(857)
  17. Sharma, S.S. and Fahey, M. (2004) Deformation characteristics of two cemented clacareous soils, Canadian Geotechnical Journal, Vol. 41, pp. 1139-1151 https://doi.org/10.1139/t04-066
  18. Vaid, Y.P. and Chern, J.C. (1983) Effects of static shear on resistance to liquefaction, Soils and Foundation, Vol. 23, No.1, pp.47-60 https://doi.org/10.3208/sandf1972.23.47
  19. Vaid, Y.P. and Chern, J.C. (1985) Cyclic and monotonic undrained response of saturated sands, Proceedings, Advances in the art of testing soils under cyclic conditions, V. Khosla, (ed.), ASCE Convention, Detroit, MI, pp. 120-147