DOI QR코드

DOI QR Code

Life-Cycle Cost Effective Optimal Seismic Retrofit and Maintenance Strategy of Bridge Structures - (I) Development of Lifetime Seismic Reliability Analysis S/W

교량의 생애주기비용 효율적인 최적 내진보강과 유지관리전략 - (I) 생애주기 지진신뢰성해석 프로그램 개발

  • Received : 2006.04.26
  • Accepted : 2006.06.29
  • Published : 2006.11.29

Abstract

A realistic lifetime seismic-reliability based approach is unavoidable to perform Life-Cycle Cost (LCC)-effective optimum design, maintenance, and retrofitting of structures against seismic risk. So far, though a number of researchers have proposed the LCC-based seismic design and retrofitting methodologies, most researchers have only focused on the methodological point. Accordingly, in most works, they have not been quantitatively considered critical factors such as the effects of seismic retrofit, maintenance, and environmental stressors on lifetime seismic reliability assessment of deteriorating structures. Thus, in this study, a systemic lifetime seismic reliability analysis methodology is proposed and a program HPYER-DRAIN2DX-DS is developed to perform the desired lifetime seismic reliability analysis. To demonstrate the applicability of the program, it is applied to an example bridge with or without seismic retrofit and maintenance strategies. From the numerical investigation, it may be positively stated that HYPER-DRAIN2DX-DS can be utilized as a useful numerical tool for LCC-effective optimum seismic design, maintenance, and retrofitting of bridges.

지진하중에 대한 구조물의 생애주기비용 최적설계나 성능개선을 위해서는 생애주기 지진신뢰성해석에 기초한 접근이 불가피하다. 최근 몇몇 연구자들이 생애주기비용에 기초한 구조물의 내진설계 및 성능개선을 위한 방법론은 제안하여 왔지만, 대부분의 연구가 생애주기비용 산정을 위한 방법론 개발에 중점을 둔 연구이다. 따라서 대부분의 기존연구에서는 열화하는 구조물의 생애주기 지진신뢰성해석에 있어서 내진보강, 유지관리, 그리고 환경적 열화와 같은 주요한 인자들을 고려하지 못한 것이 사실이다. 이에 본 연구에서는 교량의 체계적인 생애주기 지진신뢰성해석 방법론을 제안하였고, 교량의 지진신뢰성해석을 위한 프로그램인 HPYER-DRAIN2DX-DS를 개발하였다. 개발된 프로그램은 내진보강이나 유지전략의 적용유무에 따른 예제교량의 생애주기 지진신뢰성해석 문제에 적용되었으며, 이를 통해 프로그램의 적용성을 검토해 보았다. 적용 예를 통해 본 연구에서 개발된 HPYER-DRAIN2DX-DS는 지진에 대한 교량의 생애주기비용 최적설계, 내진보강 및 유지관리에 있어 서 매우 유용한 도구로 사용될 수 있을 것으로 판단된다.

Keywords

References

  1. 시설안전기술공단(2001) 국도상 기존교량의 내진성능 평가 및 보강방안 연구 최종보고서
  2. 이광민, 최은수, 조효남(2005a) 교량의 지진 신뢰성해석(I)-이론 및 프로그램 개발. 대한토목학회논문집, 대한토목학회, 제22권 제SA호, pp.1098-1104
  3. 이광민, 최은수, 조효남(2005b) 교량의 지진 신뢰성해석 (II)-성능 개선된 교량에 적용 예. 대한토목학회논문집, 대한토목학회, 제22권 제6A호, pp.1105-1112
  4. 이광민(2006) 교량의 생애주기비용 효율적인 최적 내진보강과 유지관리전략 박사학위논문, 한양대학교
  5. 이철호(1992) A study on the seismic reliability analysis of simple nonlinear structures based on stochastic seismic motion. 박사학위논문, 서울대학교
  6. 한국도로교통협회(2004) 도로교설계기준
  7. 한국시설안전기술공단(2003) 안전점검 및 정밀안전진단 세부지침
  8. Ang, A.H-S., Lee, J.C., and Pires, J.A (1997) Cost-Effectiveness Evaluation of Design Criteria. Proc. of the International Workshop on Optimal Performance of Civil Infrastructure Systems, ASCE
  9. Ayyub, B.M. and Lai, K. (1989) Structural Reliability Assessment Using Latin Hypercube Sampling. Proceeding of ICOSSAR the 5th International Conference on Structural safety and Reliability
  10. Caltrans (1990) Bridge Design Specifications Manual. California Department of Transportation
  11. Chadwell, C. (1999) Professional Version Spurred the Development of UCFyber 1999. www.zevent.com
  12. Chang, S.E. and Shinozuka, M. (1996) Life-Cycle Cost Analysis with Natural Hazard Risk. Jour. of Infrastructure Systems, 9, pp. 118-126
  13. Cho, H.N., Ang, AH-S., Lim, J.K., and Lee, K.M. (2001) Reliability-Based Optimal Seismic Design and Upgrading of Continuous PC bridges Based on Minimum Expected Life-Cycle Costs. Proc. of ICOSSAR01.
  14. Choi, E.S. (2002) Seismic Analysis and Retrofit of Mid-Anerical Bridges. Ph.D. Dissertation, Univ. of Georgia Institute of Technology
  15. Clough, R.W. and Penzien, J (1975) Dynamics of Structures. McGraw-Hill Book Com. pp. 598-603
  16. Ditlevsen, O. (1979) Narrow reliability bounds for structural systems. Journal of Structural Mechanics, 7, pp. 435-451 https://doi.org/10.1080/03601217908905328
  17. Enright, M.P. (1998) Time Variant Reliability of Reinforced Concrete Bridge under Environmental attack. Ph.D. Dissertation, University of Colorado
  18. Fang, H.Y (1999) Foundation Engineering Handbook. Second Edition, Van Nostrand Reinhold, New-York
  19. Hwang, H., Liu, J, and Chiu, Y (2000) Seismic Fragility Analysis of Highway Bridges. Cerner of Earthquake Research and Information, The University of Memphis, Memphis, TN 38152
  20. Kanai, K. and Tajimi (1957) Semi-empirical Formula for the Seismic Characteristics of Ground. Bulletin of Earthquake Research Institute, University of Tokyo, Vol. 35, 1957, pp. 309-325
  21. Kelly, J.M. (1997) Earthquake-Resistance Design with Rubber. Springer, London, 1997, 2nd
  22. Lee, K.H. and Jin, Y.G. (1989) A probabilistic analysis of the seismic risk in Korea (II). Journal of the Geological Society of Korea, Vol. 25, No.1, pp. 59-71
  23. Liu, T. and Weyers, R.E. (1998) Modeling the dynamic corrosion process in chloride contaminated concrete structures. Cement and Concrete Research Vol. 28, No.3, pp. 365-379 https://doi.org/10.1016/S0008-8846(98)00259-2
  24. Maison, B.F. and Kasai, K. (1992) Dynamics of Pounding when Two Buildings Collide. Earthquake Engineering and Structural Dynamics, Vol. 21, pp. 771-786 https://doi.org/10.1002/eqe.4290210903
  25. Mander, J.B., Kim, D.K., Chen. S.S., and Premus, G.J (1996) Response of steel Bridge. Technical Council on Lifeline Earthquake Engineering monograph, New York, N.Y : American Society of Civil Engineers, No. 16
  26. Maroney. B., Kutter, B., Romstad, K., Cahi, Y.H., and Vanderbilt, E. (1994) Interpretation of Large Scale Bridge Abutment Test Results. Proceeding of 3rd Annual Seismic Research Workshop, California Department of Transportation, CA, June. pp. 27-29
  27. Roeder, C.W., Stanton, J.F., and Taylor, A.W. (1987) Performance of Elastic Bearings. National Cooperative Highway Research Program Report 298, Transportation Research Board, National Research Council, Washington, D.C
  28. Shinozuka, M., Feng, M.Q., Lee, J, and Naganuma, T. (2000) Statistical Analysis of Fragility Curves. Journal of Engineering Mechanics, ASCE, Vol. 126, No. 12, December, 2000, pp.1287-1295 https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1287)
  29. Shirato, M., Fukut, J, and Koseki, J (2003) Ductility Design of Foundation of Highway Bridge Abutments. proc. Public Works Research Institute
  30. Thoft-Christensen, P. (1997) Life-cycle cost evaluation of concrete highway bridges. Structural Engineering World Wide 1998: Proceedings of Structural Engineers World Congress 1998, Elsevier Science, B. V., Amsterdam, The Netherlands, T132-6
  31. Wen, Y.K. and Kang, Y.J. (1998) Design criteria based on minimum expected life-cycle cost. Proceedings of Structural Engineers World Congress, Paper No T132-2
  32. Yeh, C.-H. and Wen, Y.K. (1990) Modeling of Non-stationary Ground Motion and Analysis of Inelastic Structural Response. Structural Safety, 8, pp. 281-298 https://doi.org/10.1016/0167-4730(90)90046-R