DOI QR코드

DOI QR Code

Life-Cycle Cost Effective Optimal Seismic Retrofit and Maintenance Strategy of Bridge Structures - (II) Methodology for Life-Cycle Cost Analysis

교량의 생애주기비용 효율적인 최적 내진보강과 유지관리전략 - (II) 생애주기비용해석 방법론

  • Received : 2006.04.26
  • Accepted : 2006.06.29
  • Published : 2006.11.29

Abstract

The goal of this study is to develop a realistic methodology for determination of the Life-Cycle Cost (LCC)-effective optimal seismic retrofit and maintenance strategy of deteriorating bridges. The proposed methodology is based on the concept of minimum LCC which is expressed as the sum of present value of seismic retrofit costs, expected maintenance costs, and expected economic losses with the constraints such as design requirements and acceptable risk of death. The proposed methodology is applied to the LCC-effective optimal seismic retrofit and maintenance strategy of a steel bridge considered as a example bridge in the accompanying study, and various conditions such as corrosion environments and Average Daily Traffic Volumes (ADTVs) are considered to investigate the effects on total expected LCC. In addition, to verify the validity of the developed methodology, the results are compared with the existing methodology. From the numerical investigation, it may be positively expected that the proposed methodology can be effectively utilized as a practical tool for the decision-making of LCC-effective optimal seismic retrofit and maintenance strategy of deteriorating bridges.

본 연구에서는 열화하는 교량의 생애주기비용(Life-Cycle Cost: 이하 LCC)-효율적인 최적 내진보강과 유지관리전략의 선정문제의 의사결정을 위한 현실적인 방법론을 제안하고자 한다. 제안된 방법론은 설계규준과 같은 제약조건하에서 내진보강비용, 기대 유지관리비용, 그리고 기대 경제손실비용의 합으로 표현되는 총 기대 LCC의 최소화 개념에 기초하고 있다. 본 연구에서 제안된 방법론은 동반논문에서 고려된 예제교량의 최적 내진보강과 유지관리전략의 선정을 위한 문제에 적용되었고, 부식환경과 교통조건에 따른 LCC-효율성에 대하여 고찰해 보았다. 또한, 개발된 방법론의 타당성을 검증해보기 위해 고려된 조건에 따른 LCC분석결과를 기존 연구에서 제안된 방법론과 비교 및 고찰을 수행하였다. 적용 예를 통해 제안된 방법론은 LCC-효율적인 내진보강과 유지관리전략의 선정을 위한 의사결정에 있어서 매우 효율적인 도구로 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. 건설교통부(2004) 강교의 최적설계와 경제적인 유지관리를 위한 Lee분석 기법 및 시스템개발. 2차년도보고서
  2. 이광민(2006) 교량의 샘매주기비용 효율적인 최적 내진보강과 유 지관리전략 박사학위논문, 한양대학교
  3. 이수범, 심재익 (1997) 교통사고비용의 추이와 결정요인 교통개발 연구원 연구보고서. 연구총서97-09
  4. 한국개발연구원(2001) 예비타당성조사 표준지칩 연구
  5. 한국도로공사 (2003) 고속도로 교량형식별 생매주기비용(Lee) 분석연구
  6. 한국시설안전기술공단(2001) 국도상 기존교량의 내진성능 평가 및 보강방안 연구. 최종보고서
  7. 한국시설안전기술공단(2000) 도로교의 공용수명연장방안. 최종보고서
  8. 한국시설안전기술공단(2003) 안전점검 및 정밀안전진단 세부지침
  9. Ang, AH-S. and De Leon, D. (1997a) Determination of optimal target reliabilities for design and upgrading of structures. Structural Safety, Vol. 19, No.1, pp. 91-103 https://doi.org/10.1016/S0167-4730(96)00029-X
  10. Ang, A.H-S., Lee, J.C., and Pires, J.A (1997b) Cost-Effectiveness Evaluation of Design Criteria. Proc. of the International Workshop on Optimal Performance of Civil Infrastructure Systems, ASCE, pp. 1-16
  11. ATC (Applied Technology Council) (1985) Earthquake damage evaluation data for California. Report ATC-13, Redwood City, California
  12. Berthelot, C.F., Sparks, G.A, Blomme, T., Kajner, L., and Nickeson, M. (1996) Mechanistic-probabilistic vehicle operating cost model. Journal of Transportation Engineering, ASCE, Vol. 122, No.5, pp. 337-341 https://doi.org/10.1061/(ASCE)0733-947X(1996)122:5(337)
  13. Chang, S.E. and Shinozuka, M. (1996) Life-cycle cost analysis with natural hazard risk. Journal of Infrastructure Systems, ASCE, Vol. 2, No.3, pp. 118-126 https://doi.org/10.1061/(ASCE)1076-0342(1996)2:3(118)
  14. Cho, H.N., Ang, A H-S., Lim, J.K., and Lee, K.M. (2001) Reliability- Based Optimal Seismic Design and Upgrading of Continuous PC bridges Based on Minimum Expected Life-Cycle Costs. Proc. of I COSSAR'01
  15. Cho, H.N., Lee, K.M., and Cha, C.J. (2004) Life-Cycle Cost Effective Optimum Design of Steel Bridges under Corrosion Environment. Proceeding of Pacific Structural Steel Conference
  16. Lee, K.M., Cho, R.N., and Choi, Y.M. (2004) Life-Cycle Cost Effective Optimum Design of Steel Bridges. Journal of constructional Steel Research, Vol. 60, No. 11, pp. 1585-1613 https://doi.org/10.1016/j.jcsr.2003.10.009
  17. De Brito, J. and Branco, E.A. (1994) Bridge management policy using cost analysis. Proceedings of Institution of Civil Engineers: Structures and Buildings, 104, pp. 431-439
  18. Do, C.W (1998) Traffic Engineering. Chung-moon-gak, Inc., Seoul, Korea
  19. INRO (1999) EMME/2 User's Manual, Software Release 9.0. INRO Consultants Inc., Montreal, Canada
  20. Liu. S.C., Dougherty. M.R., and Neghabat. E (1976) Optimal aseismic design of building and equipment. Journal of Engineering Mechanics, ASCE, 102(3), pp. 395-414
  21. Rosenblueth, E. (1986) Optimum reliabilities and optimum design. Structural Safety, 3, pp. 69-83 https://doi.org/10.1016/0167-4730(86)90009-3
  22. Seskin, S.N. (1990) Comprehensive Framework for Highway Economic Impact Assessment Methods and Result. Transportation Research Record 1274, Transporationa Research Board, Washington, D.C., pp. 24-34
  23. Shiono, K., Krimgold, E, and Ohta, Y (1991) A method for the estimation of earthquake fatalities and its applicability to the global macro-zonation of human casualty risk. Proceedings of the 4th International Conference on Seismic Zonation, Earthquake Engineering Research Inst., Oakland, California, Vol. 3, pp. 277-284
  24. Shoji, G., Fuzino, Y, and Abe, M. (1997) Optimal allocation of earthquake-induced damage for elevated highway bridges. Journal of Structural Mechanics and Earthquake Engineering, Japan Society of Civil Engineering, 563(1-39), pp. 79-94
  25. Shirato, M., Fukut, J, and Koseki, J. (2003) Ductility Design of Foundation of Highway Bridge Abutments. proc. Public Works Research Institute
  26. Wen, Y.K. and Kang, Y.K. (1998) Design criteria based on minimum expected life-cycle cost. Proceedings of Structural Engineers World Congress, Paper No T132-2