Evaluation of Accuracy of the Physics Based Distributed Hydrologic Model Using VfloTM Model

VfloTM 모형을 이용한 물리기반의 분포형 수문모형의 정확성 평가

  • 홍준범 (한국건설기술연구원 수자원연구부) ;
  • 김병식 (한국건설기술연구원 수자원연구부) ;
  • 윤석영 (한국건설기술연구원 수자원연구부)
  • Received : 2006.06.14
  • Accepted : 2006.09.23
  • Published : 2006.11.29

Abstract

In this study, a fully distributed physical-based rainfall-runoff model called Vflo$^{TM}$ is applied to Junglang-cheon basin for simulating runoff. Geo-spatial data are used to parameterize the model to account for the characteristics of soils, landuse/cover, and topograph. 300m resolution DEM is used to compute slope and drainage network connectivity. Spatially distributed rainfall data is interpolated by ordinary kriging method. In this study, hydrograph from HEC-HMS and Vflo$^{TM}$ without/with calibration of parameters was compared to evaluate the accuracy of rainfall-runoff model From the results, a fully distributed physical-based rainfall-runoff model reproduce the peak time and shape of hydrograph much better than HEC-HMS.

본 연구에서는 물리적 기반의 완전분포 모형인 Vflo$^{TM}$ 모형이 중랑천 유역의 유출량 모의를 위하여 사용되었다. 토양, 토지 피복, 지형 특성을 나타내는 매개변수를 입력하기 위하여 지형공간 자료가 사용되었으며 유역의 하천 배수망과 각 격자에서의 경사를 구하기 위하여 300m 격자 크기의 DEM을 사용하였고 강우의 공간적 분포 방법으로 크리깅 기법을 사용하였다. 본 연구에서는 강우-유출 모형의 정확성을 평가하기 위하여 매개변수의 보정을 하지 않은 HEC-HMS와 Vflo$^{TM}$ 모형의 유출 수문곡선을 비교하였으며, 이 결과 물리적 기반의 완전분포 모형이 매개변수 보정이 없는 경우 HEC-HMS에 비해 총 유출체적은 적게 나오는 반면 수문곡선의 형태는 관측 수문곡선과 비슷하게 모의되었다. 매개변수 보정 후에도 이와 마찬가지로 Vflo$^{TM}$ 모형이 HEC-HMS 보다 더 정확한 첨두시간과 수문 곡선의 형태를 나타내는 것으로 보아 충분한 사용성이 있음을 확인할 수 있었다.

Keywords

References

  1. 건설교통부(2005) 주요지천 홍수예보프로그램 개선
  2. 국가수지원관리 종합정보시스템 http:/ /www.wamis.go.kr
  3. 김형수(2004) HEC-HMS의 이론과 실무적용, 수공학워샵 13회 교재,한국수자원학회
  4. 사공호상, 정한용, 황승미(2003) IKONOS 위성영상을 이용한 토양포장현황 분석, 춘계 워크숍 및 학술대회 논문집, 한국지리정보학회
  5. 윤용남(2001) 공업수문학, 청문각 ,pp 284-290
  6. Abbott, M.B., Bathurst, J.C., Cunge, J.A., O'Connell, P.E., and Rassmussen, J. (1986b) An introduction to the European Hydrological System-Systeme Hydrologique European, 'SHE'. 2. Structure of a physically-based distributed modelling system. J. Hydrol. 87, pp. 61-77 https://doi.org/10.1016/0022-1694(86)90115-0
  7. Abbott, M.B., Bathurst, J.C., Cunge, J.A., O'Connell, P.E., and Rasmussen, J. (1986a) An introduction to European Hydrological System-Systeme Hydrologique Europeen, 'SHE'. 1. History and philosophy of a physically-based distributed modeling system. J. Hydrol. 87, pp. 45-59 https://doi.org/10.1016/0022-1694(86)90114-9
  8. Burnash, R.J.C., Ferral, R.L., and McGuire, R.A. (1973) A general stream flow simulation system-Conceptual modeling for digital computers, Report by the Joint Federal State River Forecasts Center; Sacramento, California
  9. Henderson, F.M. (1966) Open Channel Flow, Macmillan, New York
  10. Hydrologic Engineering Center (2000) Hydrologic Modeling System: HEC-HMS, Users Manual, U.S. Army Corps of Engineers Hydrologic Engineering Center, Davis California
  11. Julien, P.Y. and Saghafian, B. (1991) CASC2D Users Manual - A Two Dimensional Watershed Rainfall-Runoff Model, Civil Engr. Report, CER90-91PYJ-BS-12. Colorado State University, Fort Collins
  12. Julien, P.Y., Saghafian, B., and Ogden, F.L. (1995) Raster-based hydrological modeling of spatially-varied surface runoff, water resources bulletin. AWRA Vol. 31, No.3, pp. 523-536
  13. Leavesley, G.H., Lichty, R.W., Troutman, B.M., and Saindon, L.G.(1983), Precipitation-runoff modeling system-User's manual, U.S. Geological Survey Water Resources Investigation Report 83
  14. Moore, I.D. and Grayson, R.B. (1991) Terrain-based catchment partitioning and runoff prediction using vector elevation data. Wat. Resour. Res., 27(6), June, pp. 1177-1191 https://doi.org/10.1029/91WR00090
  15. Ogden, F.L. and Julien, P.Y. (1994) Runoffmodel sensitivity to radar rainfall resolution, Journal of Hydrology, Vol. 158, pp. 1-18 https://doi.org/10.1016/0022-1694(94)90043-4
  16. Sherman, L.K. (1932) Streamflow from rainfall by the unit-graph method, Eng. News-Rec., Vol. 108, pp. 501-505
  17. Singh, V.P. and Woolhiser, D.A. (2002) Mathematical modeling of watershed hydrology. Journal of Hydrologic Engineering, Vol. 7, No.4, pp. 270-292 https://doi.org/10.1061/(ASCE)1084-0699(2002)7:4(270)
  18. Sun, G., Amatya, D.M., McNulty, S.G., Skaggs, R.W. and Hughes, J.H. (2000) Climate change impacts on the hydrology and productivity of a pine plantation. Journal of the American Water Resources Association. Vol. 36, No.2, pp. 367-374 https://doi.org/10.1111/j.1752-1688.2000.tb04274.x
  19. Vieux & Associate (2005) $Vflo^{TM}$ 3.0 Desktop User Manual
  20. Vieux, B.E. (2004) Distributed Hydrologic Modeling Using GIS, Kluwer Academic Publishers
  21. Vieux, B.E. and Gauer, N (1994) Finite element modeling of storm water runoff using GRASS GIS. Microcomputers in Civil Engineering, Vol. 9:4, pp. 263-270 https://doi.org/10.1111/j.1467-8667.1994.tb00334.x
  22. Vieux, B.E. and Koehler, E. (2005) $Vflo^{TM}$ Model Advanced Training
  23. Vieux, B.E. (1988) Finite Element Analysis of Hydrologic Response Areas Using Geographic Information Systems. A dissertation submitted in partial fulfillment for the degree of Doctor of Philosophy, Department of Agricultural Engineering, Michigan State University, July, pp. 199
  24. Vieux, RE. (2001) Distributed Hydrologic Modeling Using GIS, ISBN 0-7923-7002-3, Kluwer Academic Publishers, Norwell, Massachusetts, Wat. Sci. Tech. Series, Vol. 38. pp. 293
  25. Vieux, B.E., Bralts, V.F., Segerlind, L.J., and Wallace, R.B. (1990) Finite element watershed modeling: one-dimensional elements. J. Water Resour. Plan. Mgmt 116(6), pp. 803-819 https://doi.org/10.1061/(ASCE)0733-9496(1990)116:6(803)
  26. Vieux, B.E., Cui, Z., and Gaur, A. (2004) Evaluation of a physicsbased distributed hydrologic model for flood forecasting. Journal of Hydrology Vol. 298, pp. 155-154 https://doi.org/10.1016/j.jhydrol.2004.03.035
  27. Vieux, B.E. and Vieux, J.E. (2002) Vfloe: a real-time distributed hydrologic model, Proceedings of the Second Federal Interagency Hydrologic Modeling Conference, July 28-August 1