The Role of Heme Oxygenase-1 in Lung Cancer Cells

폐암세포주에서 Heme Oxygenase-1의 역할

  • Jung, Jong-Hoon (Department of Internal Medicine, College of Medicine Wonkwang University) ;
  • Kim, Hak-Ryul (Department of Internal Medicine, College of Medicine Wonkwang University) ;
  • Kim, Eun-Jung (Department of Internal Medicine, College of Medicine Wonkwang University) ;
  • Hwang, Ki-Eun (Department of Internal Medicine, College of Medicine Wonkwang University) ;
  • Kim, So-Young (Department of Internal Medicine, College of Medicine Wonkwang University) ;
  • Park, Jung-Hyun (Department of Internal Medicine, College of Medicine Wonkwang University) ;
  • Kim, Hwi-Jung (Department of Internal Medicine, College of Medicine Wonkwang University) ;
  • Yang, Sei-Hoon (Department of Internal Medicine, College of Medicine Wonkwang University) ;
  • Jeong, Eun-Taek (Department of Internal Medicine, College of Medicine Wonkwang University)
  • 정종훈 (원광대학교 의과대학 내과학교실) ;
  • 김학렬 (원광대학교 의과대학 내과학교실) ;
  • 김은정 (원광대학교 의과대학 내과학교실) ;
  • 황기은 (원광대학교 의과대학 내과학교실) ;
  • 김소영 (원광대학교 의과대학 내과학교실) ;
  • 박정현 (원광대학교 의과대학 내과학교실) ;
  • 김휘정 (원광대학교 의과대학 내과학교실) ;
  • 양세훈 (원광대학교 의과대학 내과학교실) ;
  • 정은택 (원광대학교 의과대학 내과학교실)
  • Received : 2006.01.02
  • Accepted : 2006.02.17
  • Published : 2006.03.30

Abstract

Background : Heme oxygenase-1 (HO-1) is an inducible enzyme that catalyzes the oxidative degradation of heme to form biliverdin, carbon monoxide (CO), and free iron. The current evidence has indicated a critical role of HO-1 in cytoprotection and also in other, more diverse biological functions. It is known that the high expression of HO-1 occurs in various tumors, and that HO-1 has an important role in rapid tumor growth because of its antioxidative and antiapoptotic effects. Therefore, the role of HO-1 was analyzed in human lung cancer cell lines, and especially in the A549 cell line. Material and Methods : Human lung cancer cell lines, i.e., A549, NCI-H23, NCI-H157 and NCI-H460, were used for this study. The expression of HO-1 in the untreated state was defined by Western blotting. ZnPP, which is the specific HO inhibitor we used, and the viability of cells were tested for by conducting MTT assaysy. The HO enzymatic activity, as determined via the bilirubin level, was also indirectly measured. Moreover, the generation of intracellular hydrogen peroxide (H2O2) was monitored fluorimetrically with using a scopoletin-horse radish peroxidase (HRP) assay and 2',7'-dichlorofluorescein diacetate (DCFH-DA). We have also transfected small HO-1 interfering RNA (siRNA) into A549 cells, and the apoptotic effects were evaluated by flow cytometric analysis and Western blotting. Results : The A549 cells had a greater expression of HO-1 than the other cell lines, whereas ZnPP significantly decreased the viability of the A549 cells more than the viability of the other lung cancer cells in a dose-dependant fashion. Consistent with the viability, the HO enzymatic activity also was decreased. Moreover, intracellular H2O2 generation via ZnPP was induced in a dose-dependent manner. Apoptotic events were, then induced in the HO-1 siRNA transfected A549 cells. Conclusion : HO-1 provides new important insights into the possible molecular mechanism of the antitumor therapy in lung cancer.

연구배경 : Heme oxygenase-1 (HO-1)은 heme의 분해 대사과정에 관여하는 유도성 효소로 heme을 분해하여 biliverdin, free iron, 및 일산화탄소 등을 생성시킨다. HO-1의 발현은 다양한 스트레스성 자극에 반응하여 생체방어 기능을 갖는 것으로 알려져 있는데 세포성장이나 세포사 특히 세포고사를 조절하는 것으로 보고되고 있다. 현재 신장암, 전립선암, 간암, 육종 등의 고형암에서 발현됨이 알려져 있고, 실제 HO-1 억제제를 투여했을 때 암성장이 억제됨이 보고되었다. 저자들은 폐암세포주들에서 HO-1의 발현유무와 그 역할을 규명하고 나아가 HO-1 억제제의 치료제로서의 가능성을 알아보고자 하였다. 방 법 : 비소세포폐암세포주인 A549, H23, NCI-H157, NCI-H460을 이용하였다. 세포독성은 MTT 방법으로 구하였고, HO-1의 발현은 Western blotting으로 확인하였다. HO의 효소활성은 시간당 세포단백질의 mg당 형성된 빌리루빈의 양을 이용하여 측정하였다. 또한 $H_2O_2$의 생성은 horse radish peroxidase(HRP)와 형광물질인 2',7'-dichlorofluorescein(DCF)를 이용한 두 가지 방법을 이용하였다. A549세포에 HO-1 small interfering RNA(siRNA)을 주입하여 유식세포 분석과 caspase-3에 대한 Western blotting을 통하여 세포고사유무를 확인하였다. 결 과 : 비처리 상태에서 다른 세포주에 비해 A549세포의 HO-1 발현이 증가되었으며 HO-1 활성억제제인 ZnPP를 처리하였을 때 생존율의 의미 있는 감소를 보였다. 이러한 소견과 일치하여 ZnPP는 용량의존적으로 HO 의 효소활성 감소와 세포 내 $H_2O_2$ 생성의 증가를 초래하였다. 또한 HO-1 siRNA로 주입된 A549세포는 세포고사를 유도하였다. 결 론 : HO-1은 폐암의 치료에 있어서 새로운 분자생물학적 기전의 가능성을 제시하여 HO-1에 대한 표적치료의 가능성을 보여줄 것으로 기대된다.

Keywords

References

  1. Bae JM, Won YJ, Jung KW, Suh KA, Yun YH, Shin MH, et al. SurvivalKorean cancer patients diagnosed in 1995. Cancer Res Treat 2002;34:319-25 https://doi.org/10.4143/crt.2002.34.5.319
  2. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 2002;346:92-8 https://doi.org/10.1056/NEJMoa011954
  3. Giaccone G, Herbst RS, Manegold C, Scagliotti G, Resell R, Miller V, et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-sm all-cell lung cancer: a phase III trial-INTACT 1. J Clin Oncol 2004;22:777-84 https://doi.org/10.1200/JCO.2004.08.001
  4. Sandler AB, Johnson DH, Herbst RS. Anti-vascular endothelial growth factor monoclonals in non-small cell lung cancer. Clin Cancer Res 2004;10:4258S-62S https://doi.org/10.1158/1078-0432.CCR-040023
  5. Tenhunen R, Marver HS, Schmid R. The enzymatic catabolism of hemoglobin: stimulation of microsomal heme oxygenase by hemin. J Lab Clin Med 1970;75: 410-21
  6. Baranano DE, Rao M, Ferris CD, Snyder SH. Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci U S A 2002;99:16093-8 https://doi.org/10.1073/pnas.252626999
  7. McCoubrey WK Jr, Huang TJ, Maines MD. Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem 1997;247:725-32 https://doi.org/10.1111/j.1432-1033.1997.00725.x
  8. Motterlini R, Foresti R, Bassi R, Calabrese V, Clark JE, Green CJ. Endothelial heme oxygenase-1 induction by hypoxia: modulation by inducible nitric-oxide synthase and S-nitrosothiols. J Biol Chem 2000;275:13613-20 https://doi.org/10.1074/jbc.275.18.13613
  9. Doi K, Akaike T, Fujii S, Tanaka S, Ikebe N, Beppu T, et al. Induction of haem oxygenase-1 nitric oxide and ischaemia in experimental solid tumours and implications for tumour growth. Br J Cancer 1999;80:1945-54 https://doi.org/10.1038/sj.bjc.6690624
  10. Elbirt KK, Whitmarsh AJ, Davis RJ, Bonkovsky HL. Mechanism of sodium arsenite-mediated induction of heme oxygenase-1 in hepatoma cells: role of mitogen- activated protein kinases. J Biol Chem 1998; 273:8922-31 https://doi.org/10.1074/jbc.273.15.8922
  11. Eyssen-Hernandez R, Ladoux A, Frelin C. Differential regulation of cardiac heme oxygenase-1 and vascular endothelial growth factor mRNA expressions by hemin, heavy metals, heat shock and anoxia. FEBS Lett 1996;382:229-33 https://doi.org/10.1016/0014-5793(96)00127-5
  12. Keyse SM, Tyrrell RM. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc Natl Acad Sci U S A 1989;86:99-103 https://doi.org/10.1073/pnas.86.1.99
  13. Lautier D, Luscher P, Tyrrell RM. Endogenous glutathione levels modulate both constitutive and UVA radiation/hydrogen peroxide inducible expression of the human heme oxygenase gene. Carcinogenesis 1992;13:227-32 https://doi.org/10.1093/carcin/13.2.227
  14. Wagner M, Cadetg P, Ruf R, Mazzucchelli L, Ferrari P, Redaelli CA. Heme oxygenase-1 attenuates ischemia/ reperfusion-induced apoptosis and improves survival in rat renal allografts. Kidney Int 2003;63:1564-73 https://doi.org/10.1046/j.1523-1755.2003.00897.x
  15. Choi BM, Pae HO, Chung HT. Nitric oxide priming protects nitric oxide-mediated apoptosis via heme oxygenase-1 induction. Free Radic Biol Med 2003;34:1136-45 https://doi.org/10.1016/S0891-5849(03)00064-9
  16. Amon M, Menger MD,Vollmar B. Heme oxygenase and nitric oxide synthase mediate cooling-associated protection against TNF-alpha-induced microcirculatory dysfunction and apoptotic cell death. FASEB J 2003;17:175-85 https://doi.org/10.1096/fj.02-0368com
  17. Ke B, Shen XD, Zhai Y, Gao F, Busuttil RW, Volk HD, et al. Heme oxygenase 1 mediates the immunomodulatory and antiapoptotic effects of interleukin 13 gene therapy in vivo and in vitro. Hum Gene Ther 2002;13:1845-57 https://doi.org/10.1089/104303402760372945
  18. Goodman AI, Choudhury M, da Silva JL, Schwartzman ML, Abraham NG. Overexpression of the heme oxygenase gene in renal cell carcinoma. Proc Soc Exp Biol Med 1997;214:54-61
  19. Maines MD, Abrahamsson PA. Expression of heme oxygenase-1 (HSP32) in human prostate: normal, hyperplastic, and tumor tissue distribution. Urology 1996;47:727-33 https://doi.org/10.1016/S0090-4295(96)00010-6
  20. Sahoo SK, Sawa T, Fang J, Tanaka S, Miyamoto Y, Akaike T, et al. Pegylated zinc protoporphyrin: a water-soluble heme oxygenase inhibitor with tumor- targeting capacity. Bioconjug Chem 2002;13:1031-8 https://doi.org/10.1021/bc020010k
  21. Pae HO, Oh GS, Choi BM, Chae SC, Kim YM, Chung KR, et al. Carbon monoxide produced by heme oxygenase- 1 suppresses T cell proliferation via inhibition of IL-2 production. J Immunol 2004;172:4744-51 https://doi.org/10.4049/jimmunol.172.8.4744
  22. Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H,Wysk M, et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 2000;6:422-8 https://doi.org/10.1038/74680
  23. Berberat PO, Katori M, Kaczmarek E, Anselmo D, Lassman C, Ke B, et al. Heavy chain ferritin acts as an antiapoptotic gene that protects livers from ischemia reperfusion injury. FASEB J 2003;17:1724-6 https://doi.org/10.1096/fj.03-0229fje
  24. Lee PJ, Alam J, Wiegand GW, Choi AM. Overexpression of heme oxygenase-1 in human pulmonary epithelial cells results in cell growth arrest and increased resistance to hyperoxia. Proc Natl Acad Sci U S A 1996;93:10393-8 https://doi.org/10.1073/pnas.93.19.10393
  25. Dennery PA, Sridhar KJ, Lee CS, Wong HE, Shokoohi V, Rodgers PA, et al. Heme oxygenase-mediated resistance to oxygen toxicity in hamster fibroblasts. J Biol Chem 1997;272:14937-42 https://doi.org/10.1074/jbc.272.23.14937
  26. Otterbein L, Chin BY, Otterbein SL, Lowe VC, Fessler HE, Choi AM. Mechanism of hemoglobin-induced protection against endotoxemia in rats: a ferritin- independent pathway. Am J Physiol 1997;272:L268-75
  27. Yachie A, Niida Y, Wada T, Igarashi N, Kaneda H, Toma T, et al. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest 1999;103:129-35 https://doi.org/10.1172/JCI4165
  28. Clark JE, Green CJ, Motterlini R. Involvement of the heme oxygenase-carbon monoxide pathway in keratinocyte proliferation. Biochem Biophys Res Commun 1997;241:215–20
  29. Deramaudt BM, Braunstein S, Remy P, Abraham NG. Gene transfer of human heme oxygenase into coronary endothelial cells potentially promotes angiogenesis. J Cell Biochem 1998;68:121-7 https://doi.org/10.1002/(SICI)1097-4644(19980101)68:1<121::AID-JCB12>3.0.CO;2-K
  30. Tsuji MH, Yanagawa T, Iwasa S, Tabuchi K, Onizawa K, Bannai S, et al. Heme oxygenase-1 expression in oral squamous cell carcinoma as involved in lymph node metastasis. Cancer Lett 1999;138:53-9 https://doi.org/10.1016/S0304-3835(98)00372-3
  31. Deininger MH, Meyermann R, Trautmann K, Duffner F, Grote EH, Wickboldt J, et al. Heme oxygenase (HO)-1 expressing macrophages/microglial cells accumulate during oligodendroglioma progression. Brain Res 2000;882:1-8 https://doi.org/10.1016/S0006-8993(00)02594-4
  32. Torisu-Itakura H, Furue M, Kuwano M, Ono M. Co-expression of thymidine phosphorylase and heme oxygenase-1 in macrophages in human malignant vertical growth melanomas. Jpn J Cancer Res 2000;91:906-10 https://doi.org/10.1111/j.1349-7006.2000.tb01033.x
  33. Fang J, Sawa T, Akaike T, Akuta T, Sahoo SK, Khaled G, et al. In vivo antitumor activity of pegylated zinc protoporphyrin: targeted inhibition of heme oxygenase in solid tumor. Cancer Res 2003;63:3567-74
  34. Fang J, Akaike T, Maeda H. Antiapoptotic role of heme oxygnease (HO) and the potential of HO as a target in anticancer treatment. Apoptosis 2004;9:27-35 https://doi.org/10.1023/B:APPT.0000012119.83734.4e
  35. Tanaka S, Akaike T, Fang J, Beppu T, Ogawa M, Tamura F, et al. Antiapoptotic effect of haem oxygenase- 1 induced by nitric oxide in experimental solid tumor. Br J Cancer 2003;88:902-9 https://doi.org/10.1038/sj.bjc.6600830
  36. Dumont A, Hehner SP, Hofmann TG, Ueffing M, DrogeW, Schmitz ML. Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-kappaB. Oncogene 1999;18:747-57 https://doi.org/10.1038/sj.onc.1202325
  37. Slater AF, Stefan C, Nobel I, van den Dobbelsteen DJ, Orrenius S. Signalling mechanisms and oxidative stress in apoptosis. Toxicol Lett 1995;82/83:149-53 https://doi.org/10.1016/0378-4274(95)03474-9
  38. Vile GF, Tyrrell RM. Oxidative stress resulting from ultraviolet A irradiation of human skin fibroblasts leads to a heme oxygenase-dependent increase in ferritin. J Biol Chem 1993;268:14678-81