p16INK4a Promoter Hypermethylation in Sputum, Blood, and Tissue from Non-Small Cell Lung Cancer and Pulmonary Inflammation

비소세포폐암과 염증성 폐질환에서 가래와 혈액 및 조직에서 p16INK4a Promoter 과메틸화

  • Kim, Jeong Pyo (Department of Internal Medicine, College of Medicine, the Catholic University of Korea) ;
  • Kim, Kyong Mee (Department of Pathology, College of Medicine, the Catholic University of Korea) ;
  • Kwon, Soon Seog (Department of Internal Medicine, College of Medicine, the Catholic University of Korea) ;
  • Kim, Young Kyoon (Department of Internal Medicine, College of Medicine, the Catholic University of Korea) ;
  • Kim, Kwan Hyoung (Department of Internal Medicine, College of Medicine, the Catholic University of Korea) ;
  • Moon, Hwa Sik (Department of Internal Medicine, College of Medicine, the Catholic University of Korea) ;
  • Song, Jeong Sup (Department of Internal Medicine, College of Medicine, the Catholic University of Korea) ;
  • Park, Sung Hak (Department of Internal Medicine, College of Medicine, the Catholic University of Korea) ;
  • Ahn, Joong Hyun (Department of Internal Medicine, College of Medicine, the Catholic University of Korea)
  • 김정표 (가톨릭대학교 의과대학 내과학교실) ;
  • 김경미 (가톨릭대학교 의과대학 병리학교실) ;
  • 권순석 (가톨릭대학교 의과대학 내과학교실) ;
  • 김영균 (가톨릭대학교 의과대학 내과학교실) ;
  • 김관형 (가톨릭대학교 의과대학 내과학교실) ;
  • 문화식 (가톨릭대학교 의과대학 내과학교실) ;
  • 송정섭 (가톨릭대학교 의과대학 내과학교실) ;
  • 박성학 (가톨릭대학교 의과대학 내과학교실) ;
  • 안중현 (가톨릭대학교 의과대학 내과학교실)
  • Received : 2005.10.04
  • Accepted : 2006.01.19
  • Published : 2006.02.28

Abstract

Background : The aberrant promoter hypermethylation of p16INK4a, as a tumor suppressor gene, is contributory factor to non-small cell lung cancer(NSCLC). However, its potential diagnostic impact of lung cancer is unclear. This study measured the level of $p16^{INK4a}$ promoter hypermethylation in the sputum and blood, and compared this with the level measured in the tissue obtained from NSCLC and pulmonary inflammation. Methods : Of the patients who visited the Our Lady of Mercy Hospital in Incheon, Korea for an evaluation of a lung mass and underwent blood, sputum, and tissue tests, 23patients (18 NSCLC, 5 pulmonary inflammation) were enrolled in this study. DNA was extracted from each sample and the level of p16INK4amethylation was determined using methylation-specific polymerase chain reaction. Results : $p16^{INK4a}$ methylation of the blood was observed in 88.9% (16 of 18) and 20.0% (1 of 5) of NSCLC and from pulmonary inflammation samples, respectively (P=0.008). Methylation of the sputum was observed in 83.3% (10 of 12) 80.0% (4 of 5) of NSCLC and pulmonary inflammation samples, respectively (P=1.00). Among the 8 NSCLC tissue samples, methylation changes were detected in 75.0% of samples (6 cases). Four out of seven tissue samples (57.1%) showed concordance, being methylated in both the blood and sputum. Conclusions : There was a higher level of $p16^{INK4a}$ methylation of the blood from NSCLC patients than from pulmonary inflammation. The tissue showed a high concordance with the blood in the NSCLC samples. These findings suggest that $p16^{INK4a}$ promoter hypermethylation of the blood can used to discriminate between NSCLC and pulmonary inflammation.

연구배경 : 종양억제유전자인 $p16^{INK4a}$는 promoter region의 과메틸화로 인해 비소세포폐암의 발생에 관여하는 것으로 잘 알려져 있지만 폐암의 진단 방법으로 사용할 수 있는지는 아직까지 명확하지 않다. 이에 저자들은 비소세포폐암과 염증성 폐질환 환자의 가래와 혈액 및 조직에서 $p16^{INK4a}$ 메틸화의 발현 정도와 발현 일치 정도를 알아보고자 하였다. 방 법 : 폐종양을 주소로 내원하여 혈액, 가래 및 조직 검사를 시행한 후 최종적으로 비소세포폐암(18명)과 염증성 폐질환(5명) 진단을 받은 23명을 대상으로 하였다. 각 표본에서 DNA를 추출한 후 메틸화 특이성 중합효소연쇄반응법을 이용하여 $p16^{INK4a}$ promoter region의 메틸화 양상을 비교 분석하였다. 결 과 : 혈액에서는 비소세포폐암 그룹(88.9%, 18명중 16명)이 염증성 폐질환 그룹(20.0%, 5명중 1명)보다 $p16^{INK4a}$ 메틸화 발현이 증가하였으며(P=0.008), 가래에서는 비소세포폐암 그룹(12명중 10명)과 염증성 폐질환 그룹(5명중 4명)의 발현 차이는 없었다(P=1.00). 조직은 비소세포폐암 그룹에서 8명중 6명(75.0%)이 $p16^{INK4a}$ 메틸화가 나타났다. 혈액, 가래 및 조직에서 $p16^{INK4a}$ 메틸화의 발현 일치율은 7명 중 4명이 일치한 57.1%를 보였다. 결 론 : 비소세포폐암 그룹에서 염증성 폐질환 그룹보다 혈액의 $p16^{INK4a}$ 메틸화가 증가하였고 조직과의 일치율도 높았다. 따라서 폐암이 의심되는 고 위험 인자가 있는 환자에서 혈액의$p16^{INK4a}$ 과메틸화는 비소세포폐암과 염증성 폐질환을 감별하는데 유용하게 사용될 수 있을 것으로 생각한다.

Keywords

References

  1. Greenlee RT, Murray T, Bolden S, Wingo PA. Cancer statistics, 2000. CA Cancer J Clin. 2000;50:7-33 https://doi.org/10.3322/canjclin.50.1.7
  2. 통계청. 2003년 사망원인통계결과(www.nso.go.kr). 2004
  3. Eddy DM. Screening for lung cancer.Ann Intern Med. 1989;111:232-7 https://doi.org/10.7326/0003-4819-111-3-232
  4. Martin J, Ginsberg RJ, Venkatraman ES, Bains MS, Downey RJ, Korst RJ, et al. Long-term results of combined‐modality therapy in resectable non-small ‐cell lung cancer. J Clin Oncol. 2002;20:1989-95 https://doi.org/10.1200/JCO.2002.08.092
  5. Weiss W, Boucot KR. The Philadelphia Pulmonary Neoplasm Research Project. Early roentgenographic appearance of bronchogenic carcinoma. Arch Intern Med. 1974;134:306-11 https://doi.org/10.1001/archinte.134.2.306
  6. An evaluation of radiologic and cytologic screening for the early detection of lung cancer: a cooperative pilot study of the American Cancer Society and the Veterans Administration. Cancer Res. 1966;26:2083-121
  7. Nash FA, Morgan JM, Tomkins JG. South London Lung Cancer Study. Br Med J. 1968;2:715-21 https://doi.org/10.1136/bmj.2.5607.715
  8. Brett GZ. The value of lung cancer detection by sixmonthly chest radiographs. Thorax. 1968;23:414-20 https://doi.org/10.1136/thx.23.4.414
  9. Wilde J. A 10 year follow-up of semi-annual screening for early detection of lung cancer in the Erfurt County, GDR. Eur Respir J. 1989;2:656-62
  10. Frost JK, Ball WC Jr, Levin ML, Tockman MS, Baker RR, Carter D, et al. Early lung cancer detection:results of the initial (prevalence) radiologic and cytologic screening in the Johns Hopkins study. Am Rev Respir Dis. 1984;130:549-54
  11. Flehinger BJ, Melamed MR, Zaman MB, Heelan RT, Perchick WB, Martini N. Early lung cancer detection:results of the initial (prevalence) radiologic and cytologic screening in the Memorial Sloan-Kettering study. Am Rev Respir Dis. 1984;130:555-60
  12. Fontana RS, Sanderson DR, Taylor WF, Woolner LB, Miller WE, Muhm JR, et al. Early lung cancer detection: results of the initial (prevalence) radiologic and cytologic screening in the Mayo Clinic study. Am Rev Respir Dis. 1984;130:561-5
  13. Kubik A, Polak J. Lung cancer detection. Results of a randomized prospective study in Czechoslovakia. Cancer. 1986;57:2427-37 https://doi.org/10.1002/1097-0142(19860615)57:12<2427::AID-CNCR2820571230>3.0.CO;2-M
  14. Fong KM, Sekido Y, Minna JD. Molecular pathogenesis of lung cancer. J Thorac Cardiovasc Surg. 1999;118:1136-52 https://doi.org/10.1016/S0022-5223(99)70121-2
  15. Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet. 1999;21:163-7 https://doi.org/10.1038/5947
  16. Wajed SA, Laird PW, DeMeester TR. DNA methylation: an alternative pathway to cancer. Ann Surg. 2001;234:10-20 https://doi.org/10.1097/00000658-200107000-00003
  17. Herman JG. Hypermethylation of tumor suppressor genes in cancer. Semin Cancer Biol. 1999;9:359-67 https://doi.org/10.1006/scbi.1999.0138
  18. Kamb A, Gruis NA, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigian SV, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science. 1994;264:436-40 https://doi.org/10.1126/science.8153634
  19. Otterson GA, Kratzke RA, Coxon A, Kim YW, Kaye FJ. Absence of p16INK4 protein is restricted to the subset of lung cancer lines that retains wildtype RB. Oncogene. 1994;9:3375-8
  20. Mao L, Hruban RH, Boyle JO, Tockman M, Sidransky D. Detection of oncogene mutations in sputum precedes diagnosis of lung cancer. Cancer Res. 1994;54:1634-7
  21. Belinsky SA, Nikula KJ, Palmisano WA, Michels R, Saccomanno G, Gabrielson E, et al. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci U S A. 1998;95:11891-6 https://doi.org/10.1073/pnas.95.20.11891
  22. Esteller M, Sanchez Cespedes - M, Rosell R, Sidransky D, Baylin SB, Herman JG. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res. 1999;59:67-70
  23. Ahrendt SA, Chow JT, Xu LH, Yang SC, Eisenberger CF, Esteller M, et al. Molecular detection of tumor cells in bronchoalveolar lavage fluid from patients with early stage lung cancer. J Natl Cancer Inst. 1999;91:332-9 https://doi.org/10.1093/jnci/91.4.332
  24. Palmisano WA, Divine KK, Saccomanno G, Gilliland FD, Baylin SB, Herman JG, et al. Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res. 2000;60:5954-8
  25. Kersting M, Friedl C, Kraus A, Behn M, Pankow W, Schuermann M. Differential frequencies of p16(INK4-a) promoter hypermethylation, p53 mutation, and K-ras mutation in exfoliative material mark the development of lung cancer in symptomatic chronic smokers. J Clin Oncol. 2000;18 :3221-9 https://doi.org/10.1200/JCO.2000.18.18.3221
  26. Belinsky SA, Palmisano WA, Gilliland FD, Crooks LA, Divine KK, Winters SA, et al. Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Cancer Res. 2002;62:2370-7
  27. Destro A, Bianchi P, Alloisio M, Laghi L, Di Gioia S, Malesci A, et al. K-ras and p16(INK4A)alterations in sputum of NSCLC patients and in heavy asymptomatic chronic smokers. Lung Cancer. 2004;44:23-32 https://doi.org/10.1016/j.lungcan.2003.10.002
  28. Mountain CF. Revisions in the International System for Staging Lung Cancer. Chest. 1997;111:1710-7 https://doi.org/10.1378/chest.111.6.1710
  29. Kunkel LM, Smith KD, Boyer SH, Borgaonkar DS, Wachtel SS, Miller OJ, et al. Analysis of human Ychromosome‐specific reiterated DNA in chromosome variants. Proc Natl Acad Sci U S A. 1977;74:1245-9 https://doi.org/10.1073/pnas.74.3.1245
  30. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996;93:9821-6 https://doi.org/10.1073/pnas.93.18.9821
  31. Mulshine JL, Treston AM, Scott FM, Avis I, Boland C, Phelps R, et al. Lung cancer: rational strategies for early detection and intervention. Oncology. 1991;5:25-32 https://doi.org/10.1159/000215036
  32. Wistuba II, Behrens C, Milchgrub S, Bryant D, Hung J, Minna JD, et al. Sequential molecular abnormalities are involved in the multistage development of squamous cell lung carcinoma. Oncogene. 1999;18:643-50 https://doi.org/10.1038/sj.onc.1202349
  33. Geradts J, Fong KM, Zimmerman PV, Maynard R, Minna JD. Correlation of abnormal RB, p16ink4a, and p53 expression with 3p loss of heterozygosity, other genetic abnormalities, and clinical features in 103 primary non-small cell lung cancers. Clin Cancer Res. 1999 Apr;5(4):791-800
  34. Kratzke RA, Greatens TM, Rubins JB, Maddaus MA, Niewoehner DE, Niehans GA, et al. Rb and p16INK4a expression in resected non‐small cell lung tumors. Cancer Res. 1996 Aug 1;56(15):3415-20
  35. Singal R, Ginder GD. DNA methylation. Blood. 1999;93:4059-70
  36. Szyf M The DNA methylation machinery as a target for anticancer therapy. Pharmacol Ther. 1996;70:1-37 https://doi.org/10.1016/0163-7258(96)00002-2
  37. Antequera F, Bird A. Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A. 1993;90:11995-9 https://doi.org/10.1073/pnas.90.24.11995
  38. Bird AP. CpG rich islands and the function of DNA methylation. Nature. 1986;321:209-13 https://doi.org/10.1038/321209a0
  39. Baylin SB. Tying it all together: epigenetics, genetics, cell cycle, and cancer. Science. 1997;277:1948-9 https://doi.org/10.1126/science.277.5334.1948
  40. Grant SG, Chapman VM. Mechanisms of X-chro-mosome regulation. Annu Rev Genet. 1988;22:199-233 https://doi.org/10.1146/annurev.ge.22.120188.001215
  41. Lee JT, Jaenisch R. The (epi)genetic control of mammalian X-chr-omosome inactivation. Curr Opin Genet Dev. 1997;7:274-80 https://doi.org/10.1016/S0959-437X(97)80138-4
  42. McBurney MW. Gene silencing in the development of cancer. Exp Cell Res. 1999;248:25-9 https://doi.org/10.1006/excr.1999.4454
  43. Razin A, Cedar H. DNA methylation and gene expression. Microbiol Rev. 1991;55:451-8
  44. Monk M, Boubelik M, Lehnert S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development. 1987;99:371-82
  45. Lei H, Oh SP, Okano M, Juttermann R, Goss KA, Jaenisch R, et al. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development. 1996;122:3195-205
  46. Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992;69:915-26 https://doi.org/10.1016/0092-8674(92)90611-F
  47. Jaenisch R. DNA methylation and imprinting: why bother? Trends Genet. 1997;13:323-9 https://doi.org/10.1016/S0168-9525(97)01180-3
  48. Lee YW, Klein CB, Kargacin B, Salnikow K, Kitahara J, Dowjat K, et al. Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol Cell Biol. 1995;15:2547-57 https://doi.org/10.1128/MCB.15.5.2547
  49. Swafford DS, Middleton SK, Palmisano WA, Nikula KJ, Tesfaigzi J, Baylin SB, et al. Frequent aberrant methylation of p16INK4a in primary rat lung tumors. Mol Cell Biol. 1997;17:1366-74 https://doi.org/10.1128/MCB.17.3.1366
  50. Johnson TB, Coghill RD. The discovery of 5-methyl cytosine in tuberculinic acid, the nucleic acid of the tubercle bacillus. J Am Chem Soc 1925;47:2838-44 https://doi.org/10.1021/ja01688a030
  51. Hotchkiss RD. The quantitative separation of purines, pyrimidines, and nucleotides by paper chromatography. J Biol chem 1948;175:315-32
  52. Srivastava R, Gopinathan KP, Ramakrishnan T. Deoxyribonucleic acid methylation in mycobacteria. J Bacteriol. 1981;148:716-9
  53. Hemavathy KC, Nagaraja V. DNA methylation in mycobacteria: absence of methylation at GATC (Dam) and CCA/TGG (Dcm) sequences. FEMS Immunol Med Microbiol. 1995;11:291-6 https://doi.org/10.1111/j.1574-695X.1995.tb00159.x
  54. Landis SH, Murray T, Bolden S, Wingo PA. Cancer statistics, 1998. CA Cancer J Clin. 1998;48:6‐29 https://doi.org/10.3322/canjclin.48.1.6
  55. Ahuja N, Li Q, Mohan AL, Baylin SB, Issa JP. Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res. 1998;58:5489-94
  56. Issa JP, Ottaviano YL, Celano P, Hamilton SR, Davidson NE, Baylin SB. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet. 1994;7:536-40 https://doi.org/10.1038/ng0894-536
  57. Melamed MR, Flehinger BJ, Zaman MB, Heelan RT, Perchick WA, Martini N. Screening for early lung cancer. Results of the Memorial Sloan-Kettering study in New York. Chest. 1984;86:44-53 https://doi.org/10.1378/chest.86.1.44
  58. Screening (lung cancer). Chest. 1986;89:324S-326S