Investigation of the Growth Rate Change in Recombinant BCG which was cloned Mycobacterium tuberculosis Adenylate Kinase Mutation Gene or Human Muscle-type Adenylate Kinase Synthetic Gene

결핵균 Adenylate Kinase 돌연변이 유전자와 Human Muscle-type Adenylate Kinase 합성 유전자를 형질전환한 BCG의 성장속도 변화 유무 조사

  • Lee, Seung-Heon (Department of Molecular Biology, Korean Institute of Tuberculosis) ;
  • Kim, Hyo-Joon (Department of Biochemistry, Hanyang University College of Biotechnology) ;
  • Park, Young-Kil (Department of Molecular Biology, Korean Institute of Tuberculosis) ;
  • Bai, Gill-Han (Department of Molecular Biology, Korean Institute of Tuberculosis)
  • 이승헌 (대한결핵협회 결핵연구원) ;
  • 김효준 (한양대학교 과학기술대학 생화학과) ;
  • 박영길 (대한결핵협회 결핵연구원) ;
  • 배길한 (대한결핵협회 결핵연구원)
  • Received : 2005.11.02
  • Accepted : 2006.01.27
  • Published : 2006.02.28

Abstract

Background : Normal cell proliferation and viability is strongly depends on the availability of metabolic energy and the maintenance of the appropriate adenylate-nucleotide pools. Hypothetically, changes in adenylate kinase (AK) expression could therefore be associated with adaptation to altered growth characteristics or inversely altered growth characteristics of proliferating cells could drive the changes in the metabolic profile. This study investigated whether the expression of either AK1 or a Mycobacterium tuberculosis adenylate kinase mutant which has the same catalytic activity of AK1 could affect the growth rate of slow-growing BCG. Method : Recombinant BCGs, which were cloned the human muscle-type adenylate kinase synthetic gene (AK1) and adenylate kinase mutation gene (AKmtDM) of Mycobacterium tuberculosis into the Mycobacterium/E.coli expression vectors, were constructed. Recombinant BCGs and wild-type BCG were cultured in 7H9 media and the optical density at 600nm was measured at intervals of 2-3 days. Result : There wasn't the growth rate change induced by AK1 or AKmtDM expression in recombinant BCGs. Conclusion : The expression of AK1 or Mycobacterium tuberculosis adenylate kinase mutant in BCG does not affect the growth rate of BCG.

배 경 : 결핵균의 성장 속도가 늦은 이유가 mammalian cell이나 대장균에 비해 결핵균 AK의 매우 낮은 활성도에 의한 것이라는 추측으로부터 AK1과 유사한 촉매능을 나타내는 AKmt 돌연변이 유전자와 human muscle-type AK 합성 유전자(AK1)를 각각 Mycobacterium/E.coli 발현벡터에 재조합(pMVAKmtDM, pEMAK1)하여 성장 속도가 매우 느린 BCG에 형질전환함으로써 이들 단백질들의 촉매능에 의한 성장 속도 변화가 일어나는지를 확인하고자 하였다. 방 법 : Human AK1의 촉매 활성도와 유사하도록 결핵균 AK (AKmt)유전자의 ATPbd와 LID domain을 돌연변이하여 제조한 유전자(AKmtDM)와 human muscle-type adenylate kinase 합성 유전자(AK1)를 Mycobacterium/E.coli 발현벡터에 클로닝하여 재조합 BCG를 제조하였고, 이들 재조합 BCG와 BCG Pasteur $1173P_2$ (wild-type)를 7H9 액체배지에 접종하여 2-3 일 간격으로 $A_{600}$ 값을 측정하였다. 결 과 : 재조합 BCG의 성장 속도는 Wild-type BCG의 성장 속도에 비해 변화가 없었다. 결 론 : 결핵균 adenylate kinase의 정확한 기능은 알 수 없으나, adenylate kinase의 촉매 활성도의 증가는 BCG의 성장 속도에는 영향을 주지 않는 것으로 판단된다.

Keywords

References

  1. Dzeja PP, Zeleznikar RJ, Goldberg ND. Adenylate kinase: kinetic behavior in intact cells indicates it is integral to multiple cellular processes. Mol Cell Biochem 1998;184:169-82 https://doi.org/10.1023/A:1006859632730
  2. Zeleznikar RJ, Dzeja PP, Goldberg ND. Adenylate kinase-catalyzed phosphoryl transfer couples ATP utilization with its generation by glycolysis in intact muscle. J Biol Chem 1995;270:7311-9 https://doi.org/10.1074/jbc.270.13.7311
  3. van Rompay AR, Johansson M, Karlsson A. Phosphorylation of nucleosides and nucleoside analogues by mammalian nucleoside monophosphate kinases. Pharmacel Ther 2000;87:189-98 https://doi.org/10.1016/S0163-7258(00)00048-6
  4. van Rompay AR, Johansson M, Karlsson A. Identification of a novel human adenylate kinase: cDNA cloning, expression analysis, chromosome localization and characterization of the recombinant protein. Eur J Biochem 1999;261:509-17 https://doi.org/10.1046/j.1432-1327.1999.00294.x
  5. Fukami-Kobayashi K, Nosaka M, Nakazawa A, Go M. Ancient divergence of long and short isoforms of adenylate kinase: molecular evolution of the nucleoside monophosphate kinase family. FEBS Lett 1996;385:214-20 https://doi.org/10.1016/0014-5793(96)00367-5
  6. Yoneda T, Sato M, Maeda M, Takagi H. Identification of a novel adenylate kinase system in brain: cloning of the fourth adenylate kinase. Brain Res Mol Brain Res 1998;62:187-95 https://doi.org/10.1016/S0169-328X(98)00249-6
  7. Muller CW, Schlauderer GJ, Reinstein J, Schultz GE. Adenylate kinase motions during catalysis: an energetic counterweight balancing substrate binding. Structure 1996;4:147-56 https://doi.org/10.1016/S0969-2126(96)00018-4
  8. Muller CW, Schultz GE. Structure of the complex of adenylate kinase from Escherichia coli with the inhibitor P1, P5-di(adenosine-5'-)pentaphosphate. J Mol Biol 1988;202:909-12 https://doi.org/10.1016/0022-2836(88)90567-0
  9. Abele U, Schulz GE. High-resolution structures of adenylate kinase from yeast ligated with inhibitor Ap5A, showing the pathway of phosphoryl transfer. Protein Sci 1995;4:1262-71 https://doi.org/10.1002/pro.5560040702
  10. Wild K, Grafmuller R, Wagner E, Schulz GE. Structure, catalysis and supramolecular assembly of adenylate kinase from maize. Eur J Biochem 1997; 250:326-31 https://doi.org/10.1111/j.1432-1033.1997.0326a.x
  11. Yan H, Tsai MD. Nucleoside monophosphate kinases:structure, mechanism, and substrate specificity. Adv Enzymol Relat Areas Mol Biol 1999;73:103-34 https://doi.org/10.1002/9780470123195.ch4
  12. Inouye S, Yamada Y, Miura K, Suzuki H, Kawata K, Shinoda K, et al. Distribution and developmental changes of adenylate kinase isozymes in the rat brain:loclization of adenylate kinase 1 in the olfactory bulb. Biochem Biophys Res Commun 1999;254:618-22 https://doi.org/10.1006/bbrc.1998.0116
  13. Janssen E, Dzeja PP, Oerlemans F, Simonetti AW, Heerschap A, de Haan A, et al. Adenylate kinase 1 gene deletion disrupts muscle energetic economy despite metabolic rearrangement. EMBO J 2000;19:6371-81 https://doi.org/10.1093/emboj/19.23.6371
  14. Pucar D, Janssen E, Dzeja PP, Juranic N, Macura S, Wieringa B, et al. Compromised energetics in the adenylate kinase AK1 gene knockout heart under metabolic stress. J Biol Chem 2000;275:41424-9 https://doi.org/10.1074/jbc.M007903200
  15. Miron S, Munier-Lehmann H, Craescu CT. Structure and dynamic studies on ligand-free adenylate kinase from Mycobacterium tuberculosis revealed a closed conformation that can be related to the reduced catalytic activity. Biochemistry 2004;43:67-77 https://doi.org/10.1021/bi0355995
  16. Munier-Lehmann H, Burlacu-Miron S, Craescu CT, Mantsch HH, Schultz CP. A new subfamily of short bacterial adenylate kinases with the Mycobacterium tuberculosis enzyme as a model: a predictive and experimental study. Proteins 1999;36:238-48 https://doi.org/10.1002/(SICI)1097-0134(19990801)36:2<238::AID-PROT9>3.0.CO;2-K
  17. 이수현. 단백질 공학에 의해 활성이 강화된 myco-bacterial adenylate kinase 변이체의 작성. 한양대학교 석사학위논문 2005
  18. de Bruin W, Oerlemans F, Wieringa B. Adenylate kinase I does not affect cellular growth characteristics under normal and metabolic stress conditions. Exp Cell Res 2004;297:97-107 https://doi.org/10.1016/j.yexcr.2004.02.025
  19. Markaryan A, Zaborina O, Punj V, Chakrabarty AM. Adenylate kinase as a virulence factor of Pseudomonas aeruginosa. J Bacteriol 2001;183:3345-52 https://doi.org/10.1128/JB.183.11.3345-3352.2001