Isotopic Evidence of Marine Yeast to Artificial Culture of Moina macrocopa

물벼룩(Moina macrocopa)배양을 위한 해양효모의 유효성에 대한 안전 동위원소의 증거

  • Kim Mu-Chan (Department of Marine Environmental Engineering, Gyongsang National University) ;
  • Kang Chang-Keun (Division of Biological Science, Pusan National University) ;
  • Park Hye-Young (Microbiology, Pukyong National University) ;
  • Lee Dae-Seong (Microbiology, Pukyong National University) ;
  • Kim Yun-Sook (Microbiology, Pukyong National University) ;
  • Lee Won-Jae (Microbiology, Pukyong National University)
  • 김무찬 (경상대학교 해양환경공학과) ;
  • 강창근 (부산대학교 생명과학부 생물학과) ;
  • 박혜영 (부경대학교 미생물학과) ;
  • 이대성 (부경대학교 미생물학과) ;
  • 김윤숙 (부경대학교 미생물학과) ;
  • 이원재 (부경대학교 미생물학과)
  • Published : 2006.06.01

Abstract

A feeding trial was conducted to test the use of marine yeasts isolated from seawaters and sediments as a dietary source in cultivating a Cladocera, Moina macrocopa which is available as an alternative live food for fish larvae. The marine yeast-fed M. macrocopa had similar essential amino acid profiles to the documented values for Rotifers and Artemia enriched in microalgae and commercial diets. Erythrobacter sp. $S{\pi}-1$ lacked ${\omega}-3$ high unsaturated fatty acids (HUFAs), $20:5{\omega}-3$ (EPA) and $22:6{\omega}-3$ (DHA), which were also poor but detected in both the marine yeasts. An increase in the $20:5{\omega}-3$ and $22:6{\omega}-3$ levels, compared with the levels in marine yeast strains themselves, was more pronounced in the $22:6{\omega}-3$ level of Moina fed the Candida sp. Y-16, resulting in a high DHA:EPA ratio. When the Moina diets were switched, their ${\delta}^{13}C$ values shifted gradually toward the values of the switched diets. Diet switch from Erythrobacter sp. $S{\pi}-1$to Candide sp. Y.16 resulted in a more rapid turnover of Moina tissue carbon than that in the inverse case. When fed a mixed diet, the ${\delta}^{13}C$ values of Moina tissue approached the value of marine yeasts immediately. These temporal changes in the ${\delta}^{13}C$ values of Moina tissue indicate the preferential ingestion of marine yeasts and a selective assimilation of the carbon originated from marine yeasts. These findings suggest that marine yeasts, particularly Candida sp. Y-16, are highly available to mass cultures of M. macrocopa, providing better nutritional and dietaty values than the commercial diet (Erythrobacter sp. $S{\pi}-1$).

연안해역에서 분리된 해양효모 중 불포화 지방산을 함유한 두 종의 해양효모를 선정하여 물벼룩인 Moina macrocopna에 먹이로 투여하여 먹이의 유효성과 먹이의 선호도를 방사성 안전 동위원소를 사용하여 실험한 결과를 요약하면 다음과 같다. 1. 두 종의 해양효모 Debaryomyces sp. Y-14는 전체 지방산 중 Docosahexaenoic acid (DHA)가 3.6%이고 총 아미노산 함량이 34.9%이며, Candida sp. Y-16는 지방산중 Eicosa pentaenoic acid (EPA)가 0.4%이고 총 아미노산이 46.2%였다. 2. Debaryomyces sp. Y-14로 배양한 M. macrocopa는 전체 지방산 함량 중 DHA가 5.5%, 총 아미노산 함량이 49.2%이고, Candida sp. Y-16으로 배양한 M. macrocopa는 전체 지방산 함량 중 EPA가 2.1%, DHA가 0.6%이고 총 아미노산 함량은 30.3% 였다. 3. 탄소안정 동위원소(${\delta}^{13}C$)는 Debaromyces sp. Y-14는 $-11.5\%_{\circ}$이고 Candida sp. Y-16은 $-10.1\%_{\circ}$이고 대조구인 Erythrobacter sp. $S{\pi}-1$$-24.1\%_{\circ}$로 약 $14\%_{\circ}$정도의 차이를 보였다. 4. 해양효모를 M. macrocopa에 먹이로 투여했을 때 ${\delta}^{13}C$값은 $-10.9\%_{\circ}$, Erythrobacter sp. $S{\pi}-1$을 먹이로 투여한 경우는 $-21.8\%_{\circ}$였다. 5. M. macrocopa의 생체내 탄소의 회전율은 실험초기에는 $-15\%_{\circ}$$-13\%_{\circ}$였지만 Erythrobacter sp. $S{\pi}-1$으로 바꾸어 20일 정도 배양한 결과 $-19\%_{\circ}$로 안정화되는 경향이 있었다. 6. 먹이의 선호도는 배양 4일부터 M. macrocopa 생체내의 ${\delta}^{13}C$값이 $-13\%_{\circ}$에서 $-10\%_{\circ}$사이의 범위로 나타나 해양효모에 가까운 값으로 대조구인 Erythrobacter sp. $S{\pi}-1$보다 선호하는 것으로 나타났다.

Keywords

References

  1. Bell, M.V., R.J. Henderson, and J.R. Sargent. 1985. Changes in the fatty acid composition of phospholipida from turbot (Scophthalmus maximus) in relation to dietary polyunsaturated fatty acid deficiencies. Comp. Biochem. Phys. 81B, 193-198
  2. Bligh, E.C. and W.J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911-927 https://doi.org/10.1139/o59-099
  3. Brinkmeyer, R.L. and G.H. Holt. 1998. Highly unsaturated fatty acids in diets for red drum (Sciaenops ocellatus) larvae. Aquaculture 161, 253-268 https://doi.org/10.1016/S0044-8486(97)00274-3
  4. Brown, M.R., S.W. Jeffrey, J.K. Volkman, and G.A. Dunstan. 1997. Nutritional properties of microalgae for mariculture. Aquaculture 151, 315-331 https://doi.org/10.1016/S0044-8486(96)01501-3
  5. Coutteau, P. and P. Sorgeloos. 1997. Manipulation of dietary lipids, fatty acids and vitamins in zooplankton cultures. Freshwater Biology 38, 501-512 https://doi.org/10.1046/j.1365-2427.1997.00239.x
  6. Fry, B. and E. B. Sherr. 1984. $\delta^{13}C$ measurements as indicators of carbon flow in marine and freshwater ecosystems. Cont. Mar. Sci. 27, 49-63
  7. Gearing, J.N. 1991. The study of diet and trophic relationships through natural abundance $^{13}C$, p. 201-218. D.C. Coleman and B. Fry (ed.), Carbon Isotope Techniques, Academic Press, San Diego, California
  8. He, Z.H., J.G. Qin, Y. Wang, H. Jiang, and Z. Wen. 2001. Biology of Moina mongolica (Moinidae, Cladocera) and perspective as live food for marine fish larvae : review. Hydrobiologia 457, 25- 37 https://doi.org/10.1023/A:1012277328391
  9. Jung, M.M., H.S. Kim, S. Rho, S.I. Hur, Y.S. Yoon, and J.W. Kim. 2001. Originals : Effects of Saline Concentrations on the Culture Density and Feeding of Estuarine Cladoceran, Diaphanosoma celebensis. J. Korean Fish. Soc. 34, 605-610(in Korean)
  10. Kanazawa, A. 1993. Nutritional mechanisms involved in the occurrence of abnormal pigmentation in hatchery-reared flatfish. J. World Aquacult. Soc. 24, 162-166 https://doi.org/10.1111/j.1749-7345.1993.tb00005.x
  11. Koven, M.W., A. Tandler, G.Wm. Kissil, and D. Sklan. 1992. The importance of n-3 highly unsaturated fatty acids for growth in larval Sparus aurata and their effect on survival, lipid composition and size distribution. Aquaculture 104, 91-104 https://doi.org/10.1016/0044-8486(92)90140-G
  12. Lajtha, K. and R. H. Michener. 1994. Stable isotopes in ecology and environmental science. Blackwell Scientific Publications, London. p. 316
  13. Lee, S.M., J.Y. Lee, and S.B. Hur. 1994. Essentiality of Dietary Eicosapentaenoic Acid and Docosahexaenoic Acid in Korean Rockfish, Sebastes schlegeli. Bull. Korean Fish Soc. 27, 712-726
  14. Metealfe, L.D. and A.A. Schmitz. 1961. The rapid preparation of fatty acids esters for gas chromatographic analysis. Anal. Chem. 177, 751
  15. Nanton, D.A. and J.D. Castell. 1999. The effects of temperature and dietary fatty acids on the fatty acid composition of harpacticoid copepods, for use as a live food for marine fish larvae. Aquaculture 175, 167-181 https://doi.org/10.1016/S0044-8486(99)00031-9
  16. Rainuzzo, J.R., K.I. Reitan, and Y. Olsen. 1997. The significance of lipids at early stages of marine fish : a review, Aquaculture 155, 103-115 https://doi.org/10.1016/S0044-8486(97)00121-X
  17. Reitan, K.I., J.R. Rainuzzo, and Y. Olsen. 1994. Influence of lipid composition live feed on growth, survival and pigmentation of turbot larvae. Aquaculture International 2, 33-48 https://doi.org/10.1007/BF00118531
  18. Watanabe, T. 1993. Importance of Docosahexaenoic Acid in Marine Larval Fish. J. World Aquaculture Soc. 24, 152-161 https://doi.org/10.1111/j.1749-7345.1993.tb00004.x
  19. Watanabe, T., T. Arakawa, T. Takeuchi, and S. Satoh. 1989. Comparison between eicosapentaenoic and docosahexaenoic acid in terms of essential fatty acid efficiency in juvenile striped jack, Pseudocaranx dentex. Bull. Japan. Soc. Sci. Fish. 75, 1989-1995