Construction of Chromosome-Specific BAC Libraries from the Filamentous Ascomycete Ashbya gossypii

  • Choi Sang-Dun (Department of Molecular Science and Technology, Ajou University)
  • Published : 2006.06.01

Abstract

It is clear that the construction of large insert DNA libraries is important for map-based gene cloning, the assembly of physical maps, and simple screening for specific genomic sequences. The bacterial artificial chromosome (BAC) system is likely to be an important tool for map-based cloning of genes since BAC libraries can be constructed simply and analyzed more efficiently than yeast artificial chromosome (YAC) libraries. BACs have significantly expanded the size of fragments from eukaryotic genomes that can be cloned in Escherichia coli as plasmid molecules. To facilitate the isolation of molecular-biologically important genes in Ashbya gossypii, we constructed Ashbya chromosome-specific BAC libraries using pBeloBAC11 and pBACwich vectors with an average insert size of 100 kb, which is equivalent to 19.8X genomic coverage. pBACwich was developed to streamline map-based cloning by providing a tool to integrate large DNA fragments into specific sites in chromosomes. These chromosome-specific libraries have provided a useful tool for the further characterization of the Ashbya genome including positional cloning and genome sequencing.

Keywords

References

  1. Altmann-Johl, R. and Philippsen, P. (1996). AgTHR4, a new selection marker for transformation of the filamentous fungus Ashbya gossypii, maps in a four-gene cluster that is conserved between A. gossypii and Saccharomyces cerevisiae. Mol. Gen. Genet. 250. 69-80
  2. Bacher, A., Le Van, Q., Keller, P.J., and Floss, H.G. (1983). Biosynthesis of riboflavin. Incorporation of $^{13}C-labeled$ precursors into the xylene ring. J. Biol. Chem. 258, 13431-13437
  3. Cairns, B.R., Levinson, R.S., Yamamoto, K.R., and Kornberg, R.D. (1996). Essential role of Swp73p in the function of yeast Swi/Snf complex. Genes Dev. 10, 2131-2144 https://doi.org/10.1101/gad.10.17.2131
  4. Choi, S. (2004). Large DNA transformation in plants. Methods Mol. Biol. 256, 57-67
  5. Choi, S., Begum, D., Koshinsky, H., Ow, D.W., and Wing, R.A. (2000). A new approach for the identification and cloning of genes: the pBACwich system using Cre/Iox site-specific recombination. Nucleic Acids Res. 28, E19 https://doi.org/10.1093/nar/28.1.19
  6. Choi, S. and Kim, U.J. (2001). Construction of a bacterial artificial chromosome library. Methods Mol. Biol. 175, 57-68
  7. Dietrich, F.S., Voegeli, S., Brachat, S., Lerch, A., Gates, K., Steiner, S., Mohr, C., Pohlmann, R., Luedi, P., Choi, S., et al. (2004). The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304, 304-307 https://doi.org/10.1126/science.1095781
  8. Forster, C., Marienfeld, S., Wilhelm, R., and Kramer, R. (1998). Organelle purification and selective permeabilisation of the plasma membrane: two different approaches to study vacuoles of the filamentous fungus Ashbya gossypii. FEMS Microbiol Lett. 167, 209-214 https://doi.org/10.1111/j.1574-6968.1998.tb13230.x
  9. Forster, C., Santos, M.A., Ruffert, S., Kramer, R., and Revuelta, J.L. (1999). Physiological consequence of disruption of the VMA1 gene in the riboflavin overproducer Ashbya gossypii. J. Biol. Chem. 274, 9442-9448 https://doi.org/10.1074/jbc.274.14.9442
  10. Hall, C., Brachat, S. and Dietrich, F.S. (2005). Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Eukaryot. Cell 4, 1102-1115 https://doi.org/10.1128/EC.4.6.1102-1115.2005
  11. Hermida, L., Brachat, S., Voegeli, S., Philippsen, P., and Primig, M. (2005). The Ashbya Genome Database (AGD)-a tool for the yeast community and genome biologists. Nucleic Acids Res. 33, D348-D352 https://doi.org/10.1093/nar/gki009
  12. Jimenez, A., Santos, M.A., Pompejus, M., and Revuelta, J.L. (2005). Metabolic engineering of the purine pathway for riboflavin production in Ashbya gossypii. Appl. Environ. Microbiol. 71, 5743-5751 https://doi.org/10.1128/AEM.71.10.5743-5751.2005
  13. Karos, M., Vilarino, C., Bollschweiler, C., and Revuelta, J.L. (2004). A genome-wide transcription analysis of a fungal riboflavin overproducer. J. Biotechnol. 113, 69-76 https://doi.org/10.1016/j.jbiotec.2004.03.025
  14. Keller, P.J., Le Van, Q., Kim, S.U., Bown, D.H., Chen, H.C., Kohnle, A., Bacher, A., and Floss, H.G. (1988). Biosynthesis of riboflavin: mechanism of formation of the ribitylamino linkage. Biochemistry 27, 1117-1120 https://doi.org/10.1021/bi00404a006
  15. Kim, U.J., Birren, B.W., Slepak, T., Mancino, V., Boysen, C., Kang, H.L., Simon, M.I., and Shizuya, H. (1996). Construction and characterization of a human bacterial artificial chromosome library. Genomics 34, 213-218 https://doi.org/10.1006/geno.1996.0268
  16. Kim, U.J., Shizuya, H., Deaven, L., Chen, X.N., Korenberg, J.R., and Simon, M.I. (1995). Selection of a sublibrary enriched for a chromosome from total human bacterial artificial chromosome library using DNA from flow sorted chromosomes as hybridization probes. Nucleic Acids Res. 23, 1838-1839 https://doi.org/10.1093/nar/23.10.1838
  17. Kurtzman, C.P. (1995). Relationships among the genera Ashbya, Eremothecium, Holleya and Nematospora determined from rDNA sequence divergence. J. Ind. Microbiol. 14, 523-530 https://doi.org/10.1007/BF01573968
  18. Longmire, J.L., Brown, N.C., Meincke, L.J., Campbell, M.L., Albright, K.L., Fawcett, J.J., Campbell, E.W., Moyzis, R.K., Hildebrand, C.E., Evans, G.A., and et al. (1993). Construction and characterization of partial digest DNA libraries made from flow-sorted human chromosome 16. Genet. Anal. Tech. Appl. 10, 69-76 https://doi.org/10.1016/1050-3862(93)90037-J
  19. Maeting, I., Schmidt, G., Sahm, H., Revuelta, J.L., Stierhof, Y.D., and Stahmann, K.P. (1999). Isocitrate lyase of Ashbya gossypii-transcriptional regulation and peroxisomal localization. FEBS Lett. 444, 15-21 https://doi.org/10.1016/S0014-5793(99)00017-4
  20. Monschau, N., Sahm, H., and Stahmann, K. (1998). Threonine aldolase overexpression plus threonine supplementation enhanced riboflavin production in Ashbya gossypii. Appl. Environ. Microbiol. 64, 4283-4290
  21. Motovali-Bashi, M., Hojati, Z., and Walmsley, R.M. (2004). Unequal sister chromatid exchange in the rDNA array of Saccharomyces cerevisiae. Mutat. Res. 564, 129-137 https://doi.org/10.1016/j.mrgentox.2004.08.004
  22. Perrin, A., Buckle, M., and Dujon, B. (1993). Asymmetrical recognition and activity of the I-Scel endonuclease on its site and on intron-exonjunctions. Embo J. 12, 2939-2947
  23. Prillinger, H., Schweigkofler, W., Breitenbach, M., Briza, P., Staudacher, E., Lopandic, K., Molnar, O., Weigang, F., Ibl, M., and Ellinger, A. (1997). Phytopathogenic filamentous (Ashbya, Eremothecium) and dimorphic fungi (Holleya, Nematospora) with needle-shaped ascospores as new members within the Saccharomycetaceae. Yeast 13, 945-960 https://doi.org/10.1002/(SICI)1097-0061(199708)13:10<945::AID-YEA150>3.0.CO;2-5
  24. Stahmann, K.P., Boddecker, T., and Sahm, H. (1997). Regulation and properties of a fungal lipase showing interfacial inactivation by gas bubbles, or droplets of lipid or fatty acid. Eur. J. Biochem. 244, 220-225 https://doi.org/10.1111/j.1432-1033.1997.00220.x
  25. Steiner, S. and Philippsen, P. (1994). Sequence and promoter analysis of the highly expressed TEF gene of the filamentous fungus Ashbya gossypii. Mol. Gen. Genet. 242, 263-271 https://doi.org/10.1007/BF00280415
  26. Steiner, S., Wendland, J., Wright, M.G., and Philippsen, P. (1995). Homologous recombination as the main mechanism for DNA integration and cause of rearrangements in the filamentous ascomycete Ashbya gossypii. Genetics 140, 973-987
  27. Wach, A., Brachat, A., Alberti-Segui, C., Rebischung, C., and Philippsen, P. (1997). Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 13, 1065-1075 https://doi.org/10.1002/(SICI)1097-0061(19970915)13:11<1065::AID-YEA159>3.0.CO;2-K
  28. Wach, A., Brachat, A., Pohlmann, R., and Philippsen, P. (1994). New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793-1808 https://doi.org/10.1002/yea.320101310
  29. Wendland, J. and Walther, A. (2005). Ashbya gossypii: a model for fungal developmental biology. Nat. Rev. Microbiol. 3, 421-429 https://doi.org/10.1038/nrmicro1148
  30. Wright, M.C. and Philippsen, P. (1991). Replicative transformation of the filamentous fungus Ashbya gassypii with plasmids containing Saccharomyces cerevisiae ARS elements. Gene 109, 99-105 https://doi.org/10.1016/0378-1119(91)90593-Z