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AN ASYMPTOTIC DECOMPOSITION OF HEDGING
ERRORS

SEONGJOO SoNG! AND PER A. MYKLAND?

ABSTRACT

This paper studies the problem of option hedging when the underlying
asset price process is a compound Poisson process. By adopting an asymp-
totic approach to let the security price converge to a continuous process, we
find a closed-form hedging strategy that improves the classical Black-Scholes
hedging strategy in a quadratic sense. We first show that the sca.ed Black-
Scholes hedging error has a limit in law, and that limit is decomposed into
a part that can be traded away and a part that is purely unreplicable. The
Black-Scholes hedging strategy is then modified by adding the replicable
part of its hedging error and by adding the mean-variance hedginz strategy
to the nonreplicable part. Some results of simulation experiments are also
provided.
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1. INTRODUCTION

Perfect hedging of an option is impossible in the real world. In a complete
financial market, every contingent claim is exactly attainable by investing in
the market. But in most real instances, the market is not complete. Under
the classical Black-Scholes setting, in which the stock price process is a geometric
Brownian motion, we can construct a perfect hedging strategy because their setup
assures that the market is complete. However, the stock price process is not a
geometric Brownian motion and even not continuous in reality. Stocks move in
fixed increments that are multiples of the tick size and sometimes there are also
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big jumps, such as market crashes. When we look at the fluctuations of stock
prices on an intraday trading scale, we can see that the more realistic model is
a purely discontinuous process rather than a continuous one (Engle and Russell,
2002). In many cases, financial markets are incomplete when the underlying asset
price process has jumps. The goal of this paper is to find an appropriate hedging
strategy of a contingent claim under the market incompleteness due to jumps in
the price process. '

Models with jumps have been extensively investigated in the finance literature
for several decades as an alternative to the Black-Scholes model. One example
is jump-diffusion models, in which jumps are frequently modeled by Poisson pro-
cesses. Although Poisson processes have been used more often with diffusion, they
are also used to model the underlying price process on their own, as they could
have such real market features that prices change at discrete random points in
time. Also, even a simple geometric Poisson process can reproduce the volatility
smile in foreign exchange markets as well as the volatility skew in equity markets
(Kirch and Runggaldier, 2004). To name a few articles using Poisson processes,
Frey (2000) used a doubly stochastic compound Poisson process to calculate the
risk minimization strategy assuming that the asset price process is a martingale
under the real probability measure. Leén et al. (2002) approximated a compound
Poisson process by several independent Poisson processes and found the price and
the hedging strategy. Kirch and Runggaldier (2004) considered the underlying
price process as a geometric Poisson process with constant intensities.

In this paper, we will focus on the case where the log of the stock price process
is modeled by a compound Poisson process alone. Jumps drive the whole process
under this model, while in a typical jump-diffusion model, the diffusion part is the
main source of randomness and the jump part models only abnormal components
of the stock return distribution. In that sense, the model is similar to pure jump
processes in Eberlein and Keller (1995), Madan and Seneta (1990) and Carr et al.
(2002). A compound Poisson process has a very simple structure and yet, it can
capture fat tails or the asymmetry of the return distribution. It is also intuitive
in the sense that it jumps at random times and there are finitely many jumps in
any finite interval. Moreover, since the component of arbitrarily small jumps of
the Lévy process as well as the Brownian component can be obtained as a limit
of compound Poisson processes, the theory developed in this paper can possibly
be generalized to Lévy processes.

Here, we consider a sequence of compound Poisson processes whose limit is
the Black-Scholes stock price model. The Black-Scholes model is still used as a
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reasonable approximation in practice, and it is often considered just as robust in
theory. Therefore, it would be reasonable to consider an asymptotically geometric
Brownian motion as the underlying price process so that the Black-Scholes model
is an approximation to the true model.

Convergence of the sequence of discrete time price processes to a continuous
time process has been widely studied in finance literature. Such literature goes
back at least to the famous paper by Cox et al. (1979). Unlike most of the
previous literature dealing with a set of fixed time points, we deal with a set of
random time points with the time interval going to 0 as the jump intensity goes to
infinity. One may want to see this compound Poisson process as & generalization
of a binomial tree model, as an extension of the model by Rachev and Rushendorf
(1994). The model defined in Section 2 can be viewed as randomizations of the
jump time and the jump distribution from a binomial tree model in a particular
way that the limit is a Brownian motion. OQur convergence setup is more similar
to that of Hong and Wee (2003). They considered a sequence of jump-diffusion
models that converges weakly to the Black-Scholes model. The underlying price
processes are driven by Lévy processes and they studied the convergence of option
prices jointly with the costs from the local risk minimization strategies.

The purpose of this paper is to show that we can find an explicit form of
the hedging strategy that improves the classical Black-Scholes strategy when
we have a compound Poisson model. We first want to pull out the part of a
contingent claim that can be replicated by looking at the hedgiag error of the
classical Black-Scholes strategy. After a suitable normalization, we find the limit
in law of the Black-Scholes hedging error. We then decompose it into replicable
and non-replicable parts and find the pre-limiting processes that converge weakly
to each part. By adding the pre-limiting process that converges weakly to the
replicable part of the limit of the Black-Scholes hedging error, we update the
Black-Scholes hedging strategy. To handle the non-replicable part of the hedging
error, we employ the mean-variance hedging method.3

The remainder of the paper is organized as follows. Section 2 describes the de-
tailed model and the convergence of the underlying asset price pracess. Section 3
shows the main results to deal with the convergence and the deconiposition of the
Black-Scholes hedging error process. Proofs are in the Appendix. Then, we use
the mean-variance hedging method in Section 4 to handle the non-replicable part
of the limiting Black-Scholes hedging error. Section 5 provides some simulation

3Readers may wonder what happens if we apply the mean-variance hedging directly to the
limit of the Black-Scholes hedging error. See Remark 4.1.
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results and Section 6 contains concluding comments.

2. THE MODEL

Consider a sequence of discontinuous processes that converges to a geometric
Brownian motion. Each element of the sequence is a jump process, indexed by
n. A larger n means that the degree of discontinuity is smaller, ¢.e., the process
is closer to a geometric Brownian motion.

We suppose that for each n, the log stock price process is defined on a prob-
ability space (€, F(™, P(")} and follows a compound Poisson process such as

log S = log Sén) + Z ZZ-("), (2.1)

where N(® is a Poisson process with rate )\, and Zi(n)’s are 7id random variables,

distributed as Z(, that are independent of N(. The filtration, {]-'t(")}, is
generated by the stock price process S™ defined above. We also assume the
initial stock price S(gn) is the same as Sy for all n. As n goes to oo, we assume
that A, goes to oo and Z(™ converges to 0 in distribution. Nt(") is the number
of jumps in the log stock price process up to time ¢ and Zi(") represents the size
of the ** jump of log ™.

The underlying stock price process follows the compound Poisson process with
specific values of parameters including A,. The jump intensity, A,, is related to
the level of the trading activity of an individual stock. A heavily traded stock
is modeled with a large \,, and a less heavily traded stock is modeled with a
smaller \,. According to the level of trading activity of a stock, we determine
the value of A, so that the model fits with the data.* Each jump occurs when
there is a trading that changes the underlying stock price.

We define the jump size distribution Z(™ more precisely as follows.

7(n)

L + —( - ) 2.2

T\nQ WGl | (2.2)
where Q is a random variable with EQ = 0, EQ? = 0%, EQ? = k3 and EQ* = ky4,
under P for all n. Q has a distribution that does not depend on n and it
has finite moments of all orders. u is a constant. 2 means that both sides of

4\, can be estimated by the number of tradings that change the price, when we deal with
real datasets.
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the equality have the same distribution. It is clear that Z(™ converges to 0 in
probability as well as in distribution as n goes to oo, E(Z™) = (1/X,)(u—0a?/2),
E|ZMP = 0O0P/?) for p = 2,3 and 4, and E|ZMP = o(A22) for p > 4. We
can add a o,(\;!) term to Z(™ if we want and it would not change the rest of
the paper.

Now, consider the asymptotics as n goes to oo. The conditions above assure
that log S converges to a Brownian motion with drift.

PROPOSITION 2.1. Assume all the above conditions. Then as n goes to 0o,
the process log S™ converges in distribution to log S that is

1
log S; = log Sp + (,u — 502>t + 0B, (2.3)
where B is a Brownian motion under the limiting measure P.

Proof is standard so is omitted. One way to prove this proposition is to use
the martingale central limit theorem.

By defining the jump size distribution as in (2.2), we can interpret the param-
eters as follows. p and o are the leading terms of the expected rase of return and
the volatility, respectively, k3/v/\, is the leading term of the skewness and ky4/ A,
is the leading term of the kurtosis of the log stock price process. For instance,
k3/+v/An is the leading term of the skewness as

E{log 8™ — E(log S)}® =

kst 30%t 1, (- %02)3t
e ( 7")*”33—-

The current model permits incorporating the skewness and the kurtosis of the re-
turn distribution, which gives an advantage over models considerir.g only symmet-
ric return distributions. In the following sections, we will see that the skewness of
the log stock price process is involved in the proposed hedging strategy through
k3. If we consider the second order asymptotics, k4 would also be included in the
hedging strategy.

3. DECOMPOSITION OF THE HEDGING ERROR

We consider a market with two securities; a stock as a risky asset and a
cash bond as a riskless asset. The stock price follows the compound Poisson
model as in (2.1) and the interest rate r is assumed to be 0 without loss of
generality so that the value of a unit of the cash bond is always 1. Then consider
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a BEuropean style option whose payoff is 17(5;")) with the expiration time T. We
assume that 17(551") ) is in L?(P{™). Throughout the paper, we denote C(z, t) the
solution of the Black-Scholes PDE at time ¢t < T, with the terminal condition,
C(z,T) = n(z). Cg, Css and Cggg denote the first, second, and third derivatives
of C(z,t) with respect to x, respectively. Cg’ ) is used for the pt* derivative of
C(z,t) with respect to z, for p > 3. For each n, we compute C (St(n), t) by plugging
in the corresponding stock price St") . In other words, C(St(n), t) is computed by
the Black-Scholes PDE, but it may be different from what we observe from the
market. On the other hand, C(S;,t) is also computed by the Black-Scholes PDE,
but it is the true market price in the limit because the limiting stock price S
follows a geometric Brownian motion.
Let X be the value process of the Black-Scholes hedging portfolio, i.e.,

t
X =060+ [ es(s wast
0

In a complete market, X (™ would be a perfect hedging for n(Sf([?) ), but it is not
perfect under our compound Poisson model. Let us first look at the hedging error
of the Black-Scholes hedging strategy.

THEOREM 3.1. /A,(C (S.("), ) - x™ ) converges jointly with S™M) in distri-
bution to (R, S) where

1 t t
Ri=; [ SiCss(Suudgu+ 2 [ {352Css(Su) + S3Coss(Su )} du
0 0

(3.1)
& =W+ %Bt, c1 =4/ ks — <%§)2,
and {W;} and {B;} are independent Brownian motions under P.
ProOOF. See Appendix. O

Theorem 3.1 says that when the Black-Scholes hedging error is suitably nor-
malized, it converges weakly to a continuous process jointly with the underlying
asset price process. The limiting asset price process S follows a geometric Brow-
nian motion, as

dSt = /LStdt + O'StdBt. (32)
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Let us look at Rt more closely.

(4] T 2 ~ 1 Tk3 T
Rr=5 [ SiCss(Suudiu+; / 5 §20s5(Suw)dBu+ [ f(Suwdu
2 Jo 2Jo o Jo
C1 T ~ 1 T k3 T
= —/ SSCSS(Su,u)qu+—/ —55uCs5(Su, u)dS, + [ 9(Sy, u)du,
2 0 2 0o O JO
(3.3)
where
1
f(Su,u) = 5’“3 {352Css(Su, u) + S3Css5(Su, )},
k
9(Suyu) = F(Suu) - 5 25S2Cs5(Su,u). (3.4)
Define a measure P* by
dpP* 1p? \'
—=p |7 = exp (~§Bt - 5%15) , (3:5)

where {F;} is a filtration generated by (W, B). It is easy to show that P* is
an equivalent martingale measure for the stock price process in the limit. This
measure is, in fact, the same as the minimal martingale measure introduced by
Follmer and Schweizer (1991).> We will use this P* later in order to prove The-
orem 3.2. Since W is independent of dP*/dP, W remains a standard Brownian
motion under P*. It can also be shown that W is independent of B under P*.

THEOREM 3.2. Assume the conditions in Section 2 and 8. The limiting stock
price process is governed by (3.2) and R is defined as in (3.1). Also define Y to
be (c1/2)S%Css(S.,-). Then

T T T
Ry = / YdW, + / S 5uCss(Su,u)dS. + / (T = w)gs(Su, u)dSa. (36)
0 0 0

In particular, when the second derivative of the Black-Scholes price with respect
to S exists at the expiration time, then

- T - T
Rr = YW + / h(Wo, Su)dSa + / (T — u)gs(Su, u)dSu,
0 0

SNote that, of course, for the filtration generated only by B, (3.5) gives the usual unique
equivalent martingale measure in the Black-Scholes model. Here, however, we are dealing with
two dimensional processes, (S(™, R™), so the limiting filtration is generated by (W, S). Thus,
the limiting market is incomplete in the sense that we have two independent Brownian motions
but only one traded asset.

SFor example, the second derivative of a call option is not defined right at the expiration
time. Clearly, a call option has the second derivative, Csg(St,t), for all t < T
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where h(Wy, Sy) = —c1 Wy {SuCss(Su, 1) + (1/2)52Css5(Su, )} + {k3/(20%)} Sy
XCss(Sy,u). gs(Sy,u) denotes the first derivative of g(Sy,u) in (3.4) with re-
spect to S.

PROOF. See Appendix. O

From Theorem 3.2, we can see that the limit of the Black-Scholes hedg-
ing error at the expiration time is divided into two parts: a replicable part,
fOT[{kg/(202)}Squg(Su,u) + (T — u)gs(Sy,u))dS, and a non-replicable part,
f(;‘r Y,dW,. The replicable part is the stochastic integral with respect to the
traded asset S, so we can replicate this object exactly by holding {k3/(202)}S:
xCgs(St,t) + (T — t)gs(St, t) shares of the stock and put everything else in the
cash bond at each time ¢. On the other hand, fOT Y, dW, is the stochastic integral
with respect to a Brownian motion that is independent of S, so we cannot repli-
cate this by trading the underlying asset S. Now, since we have a replicable part
in the Black-Scholes hedging error, we try to update the Black-Scholes hedging
strategy by including the replicable part. Define H (n) to be the value of the new
hedging portfolio as follows.

H® = x4 1 [ ks st () n
= X, \/A_ 557 5u- Css(8.” ,u)dS{™
+ / T — u)gs(S,”, u)dS;". (3.7)
= ), ( )9s( )

When Cgg is bounded above and bounded away from 0 for all ¢ < T, we define
H® by including more terms as

10 =X + o= [, s0hast + = [ /@ - wyas(s? wyas?
n n

(3.8)
where R( " = \/—{C S(") 1) — t(n)} and
¢ ¢
W = / . 2 dR{™ — / ﬁ(—dsg")
0 615,(:1) C'ss(Sgi),u) 0 010251:1) (3.9)

- /t k38 Css5(S™  u) gt Falp =)t
0 361055(531), u) c10? .
The function h is the same as before.
After updating Black-Scholes hedging portfolio by H™, v/X,{n(S; (n) )— H;n)}
is the only uncontrollable part of the payoff. In fact, v A, {n(S (n)) Hq(q")} is
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purely non-replicable in the sense that it does not have any replicable compo-
nent, because it converges to a stochastic integral with respect to untradable
W. We can show the following convergence result for the new hedging error

Vi {n(sy) — HEY.

THEOREM 3.3. Assume the conditions of the Theorem 3.2. Then,
my_ o) 2, [Ty
Vo (n(8§) - ) 2 / Yud W,
0

where H™ s defined as in (3.7). Moreover, when W in (3.9) is well-defined,
subject to the conditions (A.7) and (A.8) in Appendiz,

Voo (008~ HP) 2> v,
where H™ is defined as in (3.8). 2, means the convergence in distribution.

PrOOF. See Appendix. (W

When we use H(™, we improve the Black-Scholes hedging strategy in the
sense that the mean square of the limiting hedging error is reduced. Note that
H®™ is the same as X (™ when the distribution of the log stock price is symmetric
up to the order of 1/v/ Xy, i.e. ks = 0.

PROPOSITION 3.1. Assume that C(S.,-) satisfies E{fOT SHCZ(S, t)dt} <
0o, additional to the conditions of Theorem 3.2. Note that this additional as-
sumption holds in case of a call option. Under these assumptions,

T _ 2
E ( / Yuqu) < ER%.
0
In other words,

E(limiting hedging error for H (”))2 < E(limiting Black-Scholes hedging error)?.
PROOF. It can be easily shown using E( fOT Y,dW,) = 0 and the indepen-
dence between W and S. O

Since the new hedging error \//\n{n(S(Tn)) - H;")} is purely non-replicable,
we may want to use H(™ as the final choice for the hedging portfolio. But we
can hope to do something with / )\n{n(S(Tn)) — H;n)} because the limit has the



124 SEONGJOO SONG AND PER A. MYKLAND

integrand Y that is a function of the underlying asset price process. If we specify
a certain optimality criterion, we would be able to find the best possible hedging
for the new hedging error. Consider a process

: t
Kt(n) :K0+/ al(tn)dsq(in),
0

where 8™ is a predictable process with respect to {ft(")} satisfying F{ fOT(ng)
xS(n))2du} < 00. We want to find an appropriate 6 in order for us to use K™
to hedge the new hedging error v/ A {77(5’(”) H}")}. Define a process

K, =Ky +/ 8.dS,
0

in the limiting market where 6 is a predictable process with respect to {F;}
satisfying E{ fo (8, ("))2du} < oco. Assuming that (™ converges weakly to 6,
we can show some weak convergence results for (Hf}n), K™) in the next theorem.
Note that the second term in the pair can be either a process, K™, or a random
variable K»}n).

THEOREM 3.4. Assume the conditions of the Theorem 3.2. Define H™ and
K™ gs before. Suppose that there exists a process 0 that is predictable with respect
to the limiting filtration {F;} such that E( fOT 0252du) < oo and 8™ N Jointly
with S™ and R™. Then

(\/E{n(s(’”) a7My, K(”) ( / Yqu,K)

where H™ s defined as in (8.7). If W n (8.9) is well-defined, subjec.tL to the
conditions (A.7) and (A.8) in Appendiz,

(Vanin(si) - B}, k™) 25 (vrWr, k),
where H™ is defined as in (3.8).

PROOF. See Appendix. O
Now, the value of our new hedging strategy is
K(")

L = HM + =, 3.10

t \/)\—n ( )

L™ converges to the value of the Black-Scholes hedging portfolio as n goes to
00, but it includes correction terms for the Black-Scholes hedging error. We will
call this as a compound Poisson hedging strategy in the rest of the paper.
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4. MEAN-VARIANCE HEDGING FOR fOT YudW]L

In an incomplete market where contingent claims cannot be hedged perfectly,
we need a certain criterion which our hedging strategy is based on. Although
there is no uniformly superior hedging strategy found so far, the mean-variance
hedging method is one of the most commonly used approaches. It minimizes the
global risk over the whole life of contingent claims, in the sense that it minimizes
the expected value of the square of the hedging error among a.l self-financing
strategies. To name a few papers on this method, Duffie and Richardson (1991)
and Schweizer (1992) studied it in a continuous time setting and Schal (1994)
and Schweizer (1995) examined the discrete time setup.

We will find the mean-variance hedging strategy to the non-replicable part
of the limiting Black-Scholes hedging error. Note that everything in the current
section is in the limit, in other words, we are going to find a mean-variance
hedging strategy that hedges either fOT YudW, or YpWr. The stock price process
{S:} follows a geometric Brownian motion as in (3.2).

REMARK 4.1. We may want to find the mean-variance hedging strategy di-
rectly from the limit of the Black-Scholes hedging error, Ry in (3.3). In fact, it
is not hard to show that we end up with the same strategy as (4.2) when we ap-
ply the mean-variance hedging strategy to Rr. The advantage of our method of
decomposition is that we can clearly see which part of the Black-Scholes hedging
error is completely hedgeable and which part is purely non-hedgeable.

Define Mt to be what we want to hedge; either fOT Y, dW, or YeWr. First,
we consider the case were Mp = fOT Yuqu. We want to find K7 minimizing
E(Mr — Kr)* = E{Mr — Ko — G7(0)}?, where G,() = [;6.dS, with § €
© = {6 : predictable with respect to F, E( f(;‘r 6252du) < oo}. Define 6k, to be
the argming.g E{Mr — Ko — G(6)}? for any given value Ky. By Schweizer
(1992), G(6k,) is a solution, G*, of the SDE, dGf = {u/(02S,)}(f YudWy —
Ko — Gf)dS; with G§ = 0. Schweizer (1992) assumes that Ky is negative, but
the same argument works for nonnegative Ky’s. The explicit form of G* can
be obtained easily and in particular, the explicit solution for our problem is as
follows.

PROPOSITION 4.1. The optimal hedgz’ng portfolio, { K.}, that makes the ex-
pected squared loss, E(Mr — Kr)?, minimized for a given initial value Ko is
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t 2 u 2
_ B (Su\7% - tupu / Su\ 3% 4ty gri
Kt_K0+/0 U2Su(50) 730 0 (50) % Y, dW, — Ko pdS,.

Proof is omitted since one can easily solve for K by a simple modification of
Schweizer (1992)’s derivation.

In the pre-limiting stage, we adopt the hedging portfolio K™ for a given Kg
such as

(n)\ ~ 52
K(n) KO +/t K S_un__ 6_%(52'{'”)“
0 a-zs(n) SO

P ONT:
x{ / (%) e%<5§+u>vdx/gn>_xo}dsgn>, 1)
0 0

where dV{™ denotes dRS™ — {k3/(202)}8™ Css(8™, v)dSS™ — (T —v)gs(S™, v)
xdS{™ and R\™ = VA, {C(S™, 1) — x™1.

We considered My = fOT Y, dW, in Proposition 4.1, but it is easy to see that
we end up with the same hedging portfolio when Mr = YrWr. The optimal
hedging strategy 0k, will be different, but when we go back to the pre-limiting
stage and calculate L™ we get exactly the same strategy. Thus, in either case
of Mt = fOT Y,dW, or YrWr, we obtain the value of the resulting compound
Poisson hedging portfolio as

n n K
LE) C(So,0) /CS () dS(n)-l-\/)\i

t
= [ (- wyas(s, was{?

n JO
(n)\ "%
I I
\/_n 0 025’(") So

” S(n) = 102
X / —Sgl) e2(ez gy — Ko b dS(m. (4.2)
0 0

Notice that the compound Poisson hedging strategy, L™ obtained above is de-
termined uniquely for any given value of K. This naturally leads to the question
of choice of K. Recall that the task in this section is to find {K;} that minimizes

Vow / =28 Css(SM, u)dS(M +
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E(Mr — Kr)?. Since we found {0, +} that minimizes E(M7 — K — fOT 6,dS,)*
for any given value Ky, we now want to find the value of Ky that minimizes
E(Mp — Ko — [} 0k, udSu)?

PROPOSITION 4.2. Assume that C(S., ) satisfies E*{fOT SEC24(St, t)dt} <
0o. The value of Ky that minimizes E(fOT Y dW, — Ko — fOTHKO,udSu)2 is
EX( fOT Yuqu), which is 0, where E* is the expectation under the minimal mar-
tingale measure P*.

Proor. To find Ky that minimizes E(fOT YudW, — Ko — f(;‘r 9K0,udSu)2, we
differentiate it with respect to K. Note that G} = fOT Ok, ,udSy is a function of
K.

%E(ATYuqu—KO_G*T)Z’: E{z(/OTyuqu—KO—G;)( 1—6%{()61})}.

The differentiation under the expectation can be easﬂy shown to be legitimate.
One can also get

s{o( [ W - Ko-63) (-1~ 5o1))

{ /de KO—GT)(—eAT)}

E{z(Ko+G*T—/ de) ‘ideP*IfT}
0
— E* {2e—‘i§T (Ko +GhH— / ! Yuqu) }
0
= 26_§T {Ko — E*(/T Yuqu)} .
0

G* is a square-integrable martingale under the minimal martingale measure, so
E*(G%) is 0. Since E(fOT Y, dW, — Ko — G%)? is convex in Kp, E*(fOT Y, dW,)
is the value of Ky that minimizes minge@E{fOT Y, dW, — Ko — Gr(0)}2. Wisa
Brownian motion under P*, so E*( fOT YudW,) = 0. O

Similarly, Ko that minimizes E(YrWr — Ko — [ 0, 4S5)? is *(YrWr) = 0.
We can also easily modify the above proposition for more general setting that is
given in Schweizer (1992).
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The value of the compound Poisson hedging portfolio that we finally propose is
{L{} in (4.2) with Ko = 0. With K = 0, we achieve E(My — Kr)? < E(Mr)?,
i.e., the limiting hedging error for L(™ in (4.2) is smaller than the limiting hedging
error for H(™ in (3.7) in terms of their mean squares. Combining this with
Propdsition 3.1, we get

E(limiting Black-Scholes hedging error)? > E(limiting hedging error for H (n)y2
> E(limiting hedging error for L(™)2,

5. SIMULATION

This section presents numerical results on the compound Poisson hedging
strategy. Consider a European call option that expires in 3 months. The interest
rate is assumed to be 0, p is set to be 0.15 per annum and o is set to be 0.2
per annum. We try the strike price K = $65 and the initial stock price Sy =
$60. We use three different jump intensities, A, = 1,000, 10,000 and 100, 000.
An = 10,000 means that we expect 10,000 jumps per year in the stock price on
average. Larger )\, implies that the stock is more frequently traded. The hedging
interval is 0.0001 years which means that we rebalance the hedging portfolio once
in approximately one hour.

Any distribution with the moment conditions given in Section 2 can be used
as the jump size distribution for the compound Poisson model. For example,
N(0,0?) can be used for the distribution of @ in (2.2) as a symmetric jump size
case and o — Exp(1/0) can be used as a left skewed jump size case. We use
o — Exp(1/0) as the distribution of @ in the simulation experiment. With this
distribution, k3 = —203 and k4 = 90*. The simulation size is 5,000, that is, the
number of generated sample paths is 5,000. The Black-Scholes initial price is
$0.75, in this case.

We compare the performance of the Black-Scholes and the compound Poisson
hedging strategies by calculating the mean squares of hedging errors (MSHE). By
hedging error, we mean the option payoff subtracted by the value of the hedging
portfolio at the expiration. For example, the MSHE of the Black-Scholes strategy
is

T 2
E{a(S(T"’)—cwo,O)— / cs(s£f>,t)d85"’} -
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FIGURE 5.1 Comparison of densities of hedging errors. Solid line is for Black-
Scholes hedging error and dotted line is for compound Poisson hedging error. The
Jjump size distribution is left-skewed and the jump intensity is 1000.

In general, both of the hedging strategies perform better as A, gets larger in
terms of the magnitude of MSHE, because the stock price process 's getting closer
to a geometric Brownian motion. Nevertheless, the compound Poisson hedging
strategy provides smaller MSHE than the Black-Scholes hedging strategy overall.
We also compare densities of hedging errors in Figure 5.1. The compound Poisson
hedging error (dotted line) has less spread and is more symmetric han the Black-
Scholes hedging error (solid line). In other words, the compound Poisson hedging
strategy makes the distribution of hedging errors less biased as vsell as it makes
the distribution less variable.”

The dollar terms of the mean square of hedging errors in Table 5.1 are small,

"We have also run a simulation when the underlying process is in fact a geometric Brownian
Motion. In this case, k3 will be 0, so Ht(") is the same as the Black-Scholes hedging strategy.
Since the Black-Scholes hedging strategy is a perfect one, the MSHE of Black-Scholes must
be 0 and the MSHE of the compound Poisson strategy is E(K(Tn) /VAn)?. With 5,000 sample
paths and the same parameter values given in this section, the MSHE of the compound Poisson
hedging strategy when A, = 1,000 is 0.0000102. We can see that the compound Poisson strategy
can be used safely when the underlying process is a geometric Brownian Motion.
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but the difference in MSHE between strategies is not negligible in terms of per-
centage. For example, the percentage gain in MSHE by using the compound
Poisson hedging strategy over the Black-Scholes when A, is 1,000 is about 35%.
Moreover, if we have different values of parameters, then we may also obtain
more reduction in dollar terms.

TABLE 5.1 Mean squares of hedging errors, unit=$>

An=1,000 A, =10,000 X, = 100,000
call - BS 0.059172 0.007119 0.002272
call - CP 0.038612 0.005037 0.001976
reduction{BS vs. CP) 34.7% 29.3% 13.0%

6. CONCLUDING REMARK

In this paper, we have studied the problem of hedging derivative securities
under a pure jump model. We use asymptotic theory to find a correction term to
the Black-Scholes delta, which is a different viewpoint from many previous papers
on the hedging problem in an incomplete market. When the asset price follows
a compound Poisson process that converges to a geometric Brownian motion as
the jump intensity increases, we obtained a new hedging strategy by dealing with
the first order hedging error of the classical Black-Scholes hedging strategy.

The new hedging strategy performs better than Black-Scholes hedging strat-
egy in terms of the mean square of the hedging error. Asymptotically, the mean
square of the hedging error for H(™ defined in (3.7) is at least as small as the
mean square of the hedging error for the Black-Scholes hedging strategy. More-
over, the mean square of the hedging error of the compound Poisson hedging
strategy L(™ in (4.2) with Ky = 0 is at least as small as the mean square of the
hedging error for H™. Ky = 0 means that the initial investment of the com-
pound Poisson hedging strategy is equal to the Black-Scholes option price. This
is also comsistent with the industry practice of using the Black-Scholes option
price, but using a different hedging strategy rather than the Black-Scholes delta.

The simulation study shows that the smaller hedging error of the compound
Poisson strategy is obtained even when n is not too big. When the jump intensity
An is 1,000, we obtained more than 30% reduction in the mean square of the
hedging error.

What we have done here can be generalized to Lévy processes with proper
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conditions and we will leave it for future work.

APPENDIX

Proof of Theorem 3.1

LEMMA A.1. Define £§n) = VA {[log S, log S™]; — 0%t} and & = c1 W +
(k3/o)By. cy is \/ka — (k3/0)?, and W and B are independent Brownian motions
under the limiting measure P. Then,

(log S™, M) 2, (log 8, ¢).

PROOF. Define Mt(") to be v A {[log S, log S™]; — (log S™,log S™),}.
Then fg") = Mt(n) + (1/vV ) (1 — 02/2)2t. Since (1/vdn)(p — 02 /2)%t is o(1), it
suffices to show that

(log 8™, M™) 2, (log S, ¢).
Denote Mt(n) to be log St(n) — log Son) — (u — 0%/2)t. Then M™ and M™ are
square-integrable martingales satisfying

(MM MM, = X, (log S, log S log §(™, log Sy,

k4 -
= {XZ + o()\nz)} A2t = kgt 4+ 0(1) = kat,

NI Ny, = 0% 4 L (u _ %g) b o2,

)\n n—oo
and
(MM, MM, = /A (log S™, log ™, log S™); —> kst.
Define
N
(n) _ (n)y2 (n) 2 €N (n)\2 (n))2 €
M —\/An{;(zl ) I(IZZ 2> \/A_n) )\ntE{(Z ) I(|Z | >—m)}}
and
N
M =3 2112 > €) - atE{2M1(127) > )}
=1

Here, I(-) denotes the indicator function. Then Me(") and ]\;I(';:") are square-
integrable martingales and they include all the jumps in absolute value greater
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than e, for a given ¢, of M(™ and M, respectively. Their predictable quadratic
variations are

(n) (n)y, — 4. 2 ( 7(n)\4 (n}2 €
(M, M), tE{An(z )I(IZ |>\/X_)},

(1

(M, M), = t- EQA(ZM)P1(12)] > €)}.

(M™, M)y, —0 and (M, M), —0 as n — oo because E{\2(Z™)4} < oo,
P(|1ZM|? > €/v/A3)—0 and P(|Z(M| > €)—0 as n—+ 0o. By Rebolledo’s
theorem (Andersen et al., 1993, p.83), (M), M (")) (¢,0B) and therefore,
by Proposition VI. 3.17 in Jacod and Shlryaev (1987),

(log §™, ™) 2, (log 5,€). 0
Let us now define R™ as a process, v 3, (C(S.,-)— X ™). Since we are assum-
ing E|ZM|P = o()\;2) for p = 5,6,. (AlogS( ))” = (Z(n) )pI(ANt(") =1) =

0p(A\;2) for p = 5,6,.... We also know that (AlogS(")) Op()\;"’/z) and
(Alog S, (n)) Op( n2). By It6’s formula and Taylor expansion,

R§"’=\/,\_n{0(s§">,t)— (So,0) — /os(s‘) )dS")}
=V { / Cy(S™ du+Z{AC(Sf[‘), w) — Cs(S™, )Asgm}]

u<t

n 1 n n
= \/An{/o C’t(SQS_),u)du—i—Zngs(Sl(L_),u)(ASl(t )2

u<t

1 .
+ 3 §Coss(Z w(ase) .

u<t

where Z(™ is a process satisfying min(S(") S(") ) < Z(") < max( S(n) S(")), for
all 0 < t < T. By Black-Scholes PDE and using AS{"” = S (e los 5 ~1),

Rgn) \/_/ )(S(n))2du
n oz S
: ZCSS (n) ( )) (e Alog S _1)2
u<t
/\n ~(n n O (n)
+‘/6—chss(z,g ) u) (83 (eAloe S _ 1)3, (A1)

u<t
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We can rewrite R(n)
Rgn) / Cs S S(n), U, S(n))2d€(n)

VA0 Y 5 {30ss(82, u) (S0 + Coss(207,w)(S8)° } (Alog 5PV

u<t

VAT 1 { a8 82 (8 + Cass(Z97 ()} (Aog 57

u<t
+ 3 {Oss(8,u) (57 x 0,0577)
u<t
s () o33}, (A2)

We can also show the followings.

(i) By Lemma VI. 3.31 in Jacod and Shiryaev (1987) and Lemma A.1, (log Z(™,
log S, ¢(m)y 2, (log S,log S, €), since (log 8™, log S, ¢(m) 2, (log S,
log S,€), and sup;<r | log Zt(") —log St(n)l < sup;<r |Alog St(r')| = o0p(1).

(ii) By the weak law of large numbers and Doeblin- Anscombe’s theorem (Chow
and Teicher, 1997),

N

> VAn(Alog SMY? =Ain2{ \/_n( —%(12)}. D, kat,

u<t 7

—

n)

o

N

1
{0 ez} =
(iii) By Theorem 2.7 in Kurtz and Protter (1991) and (i) and (ii) above,
<log Z™ log S™, (), % / (SEN2C55(ST, uyde,
.

v Z {3css S, u)(ST)? + Csss(Z4, w)(S)* (A log ST,

> n(ags = 2

u<t =1

VALY 1 {FCss(S2 (SN + Cass( 20 (s s g 50

2, (logs, log S, €, 3 [ SiCss(Su it
0

/ %{3033(514,&)52 + CSSS(Su,U)Sz}du, 0)_
0
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For this, we check conditions including the followings.

— For ¢,

g") = \/)\n([log 5™ log §™); — (log S, log S("))t)
+ VA ((log 5™ log S™), — a2t)
M)+ 45,

and sup,, E{[M, én), M E(n)]t+Tt(A§n))} < 00. T3(A) is the total variation
of a process A on [0, t]. '

— For VAn 30,1 (Alog Sﬁn))g’,

VY (Alog SV)° = Vs ([1og 5™, log $™, log SM],
u<t
~ (log S™ 1og S™  log S("))t)
+ v/ An(log 5™ 1og S log S("))t

— ag(m (n)
= Minlog 5134 T Alatog 8)2.07

and sup,, E{[M((Z)log 5)31 M((Z)log S)a]t + Tt(AEZ)IOg 5)3)} < .

— For VA, 32, < (Alog S&”))‘*,

/ n)hd _. pr(n) L A(m)
An Z(A log S"(f' )) _' M(AlogS)4,t + A(AlogS)4,t’

u<t

and sup,, E{[M((Z)]Og gy M((Z)log 5)4]7: + Tt(AEZ)IOg 5)4)} < 0.

(iv) The last term in (A.2) has a higher order than

1 7 n n ~(n n n
Vi Y 7{5Css (S, w)(SI)? + Css (20, u)(80)* }(Alog ().
u<-

Therefore,

th

t 1 )
R 2 /0 5 52Css(Su, u)déu + /0 & {3820s5(Su,u) + S2Csss(Sw,w) Jdu,

as a process jointly with S™.
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Proof of Theorem 3.2

From (3.3),

1

T k3 T
—/ ;SuCgs(Su,u)dSu+/ 9(S.,, u)du.
0

T
Rr = / Y. dW, +
0 2Jo

We want to show that

T T
/ 9(Su, w)du = / (T — w)gs(Su, u)dSe.
0 0

Since the interest rate r is assumed to be 0, S is a martingale under the mini-
mal martingale measure P* as dS, = 05,dB;,, where B* is a Brownian motion
under P*. Let {.7:}} be an augmentation of the filtration generated by B*. Then
fo u)du is Fr-measurable and finite almost surely. By Dudley’s theorem
(Karatzas and Shreve, 1991, p.188 or Duffie, 1996, p.287), there exists a pro-
gressively measurable process Y = {Yt,}'t,O < t < T} satisfying fo det < 00
almost surely under P* such that

T T T _ 1
/ 9{(Su, u)du :/ Y.dB;, :/ Yu—dS'u. (A.3)
0 0 0 u

Note that g(S,,u) is a P*-martingale because S? C(p )(St, t) is a P*-martingale
for any positive integer p. Define (; to be E*{ fo yu)du | F¢}. Then,

t T
= Sy, u)d E* S, w)du | Fy
G = [ o(Suwdu+ {/t 9(Su, u)du | }

¢
/ 9(Sus w)du + (T — £)g(Sy, ). (A4)
0
On the other hand,
* T * T ¥, 1 s 1
G=F {/0 g(Su,u)du | ft} =F (/0 Yua_SudSu | ft) = /0 Yu‘U‘STudSu'
Thus,
¢
(¢ ,B*): = / ffuidw, B*), = / Y, —oS du = / Y. du,
and Y; = %(C , B*):. By the way, from (A.4),

dCy = g(Se, )@t — g(Ss, t)dt + (T — t)dg(Si, t)
= (T — t)dg(S:, t)

1
= (T - t){gs(St, £)dS: + 9u(St, )t + 555 (St, t)a2s§dt}.
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Thus,

¥ = %(g \B*); = (T — £)g5(Ss, t)oSe. (A.5)

This process is progressively measurable and satisfies f(;‘p 17}2 dt < oo almost surely.
Combining (A.3) and (A.5),

’ T _ T T
Rr = / Yo dW, + / %sucss(su,u)wﬁ / (T — u)gs(Su, u)dS,.
0 0 0

In case where the second derivative of the Black-Scholes price exists at time
T, by applying Itd’s formula to fOT Y, dW,, we get

T

- T 1 Tk .
Rp =Y Wep — / W,dY, + —/ U—ZSqus(Su, u)dSu +/ g(Su, u)du
0

2 /o 0

Again, apply the Itd’s formula to Y; to obtain
1 o2 €l o2 :
dy; = cl{StCss(St,t) + 557 Cgss(St,t)}dSt + 257 [CSSt(St,t)
1
+50%{2Cs5(S1,1) +48:Csss(Su,t) + STCE (S, 1)}t

On the other hand, we know from the Black-Scholes PDE, C; + 025%Csg/2=0
when r = 0. Thus,

2 1 1 '
85?2 (Ct + 5"252055) = Csst + 5‘72(2055 +45Csss + 52°CS) = 0.

Therefore, dY; = ¢1{S:Css(S:,t) + (1/2)S?Css5(S;,t)}dSt and Ry becomes
- T . 1
Ry = YeWr — o / Wa{ 8uCs5(Su,u) + 552Csss(Su ) b,
0
1 [T ks T
+= —2SuCSs(5u, u)dS, + g(Su, u)du

2Jo 0 0

T

~ T ~
= YTWT+/ h(Wu,Su)dSu+/ 9(Sy, u)du, (A.6)
0 0

where (W, Sy,) = —ciWyu{SuCs5(Su,u) + (1/2)82Css5(Su,u)} + {k3/(20%)}
SuCss(Sy,u). Combining (A.6) and previous arguments,

T T
Ry =YrWr + / h(Wy, 84,)dS, + / (T — u)gs{Sy, u)dSy.
0 0
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Proof of Theorems 3.8 and 3.4
Let Mt(") be v A {C(S™ t) - Ht(n)}. First, for Ht(n) is defined as in (3.7), we

want to show
p [T =
M 2, / Y, dW,.
0

(i) We know that (R™,S™) converges to (R, S) weakly. By the continuous
mapping theorem, for any continuous function f,

(s, B, £(5™)) 2> (8, R, £(5)).

(i) S™, R £(S(M) are adapted to the filtration generated by S™, cidlég
processes, and S is a semimartingale. Suppose M®™ s a martingale of
S and A™ is the finite variation process in the Doob-Meyer decomposi-
tion (Karatzas and Shreve, 1991, p.24-25). Then

N(")

M = ZS() {exp(2() —1} = B {exp(z™) - 1} fsgmndu,
i)

and

t
A" =E {exp(z(">) -1} /0 S\, du.

Ti(") is the time of the i** jump of log S™. We can show thay sup, £ [M (n)
M(")]t < 00, since

t
BT, 30 = B(e*” ~ 1)? [ (80)2Andu
0

= {p+00;"*)}exp { (s + %fﬂ)t + 0(/\;”2)} ‘

() e (52

t
= |E{exp(Z("))—1}| / S \,du,
0

The total variation of fl(”) is

Ty(A

m>1

because A is monotone. Since E{exp(Z(™) — 1} = pA;1 + O\, AR %,

B{Ty(A™)} = |u + O(\;1/2)(SE / exp {pu + O(AZ/?) }du
0
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and sup, E{T;(A™)} < co. Thus, S(™ satisfies the condition of the inte-
grator in Theorem 2.7 in Kurtz and Protter (1991) with Ta=TV(a+1)

Therefore, (S™,R™, [ f(S™))d S(”)) — (S, R, [ f(S)dS), for any con-
tinuous function f.

(iii) By (i) and (i),
M - [ { G 0ss(5,0) + (7 - wyas(s,0) s
0

2, Rr —/0 { by 5SuCs5(Su, u) + (T—U)gs(Su,u)}dSu

T o~
= / Y, dW,,.
0

Secondly, when W(")I in (3.9) is well-defined, we want to show
Mz(*n) =z, YrWr,
with Ht(n) defined as in (3.8). Assume the following conditions.

sup, B [ [Css(S{”, u)|(S{”)?du < oo,
suanfOT SUPgep |Cssg(a:,u)(Sgi))3|du < 00, (A.7)

where D is the interval (min(S,(Zi), S™M), max(S\™, & )) and
sup £ / C25(S™, w)(S™)4du < oo,

B suw Cs5(S, u)Csss(z, u)(ST)P|du = O(AL/2),

0 z€D
T
E [ sup Clgg(z,u)(SM)du = O(\y). (A.8)
0 z€eD

(i) From (A.1),

+ ‘/2/\_" / Css(S™, wd[s™, 5™,
0

t
+ 30 [ Cass(20, wdls®, 50,50,
0
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since S is a pure jump process. Suppose M®™ is the local martingale
part of R™ and A™ is the finite variation process in the Doob-Meyer

decomposition. Then
_ 2 t
AP = -2 [ (s, (5
\/“/ Css(S.2 wEE”" —1)*Aa(S(7)du

Y / Css5(Z{7 wE(E”™ ~ 1)°An(8()) du
0

and

-y _ VA [* n n) on n) gln
1 = L2 [ Cos(2,wa(5, 50, - (5, 50),)

N x/GA_n /Ot Csss(ZM,w)d([S™, S, S, — (), 5 gy,
We can see that
E((, 510}, = %1{’“4 +o(1)} /0 t E[{css(sg’i),u)}2(s,9i‘)4]du
+so0 | ' B{Css(S0,u)Csss (200, w)(S0)*)du

316 1)/ {CSSS(Z(") u)} (S(” "]d

and by the assumption (A.8),
supE[M™, M"™); < co. (A.9)
n

The total variation of A on [0,1] is

™) = m (Y _ g (tk=1)
Ti(A ;@%ZIA () A7 (%)
T
/0 2 1Css(S%, ) () ks + o(1) du
T ~
+ [ §Cass(Z, (S ks + ol0)idu

Thus.
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(iii)

(iv)
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i ! ! m (g
E{T(A™)} < 31k +o(0)| [ EICss (S, u)(S()du
0

1 T . n
+glka (V)] [ ElCsss(Z0,u)(s1)du
0
By the assumption (A.7),
supE{T;(A™)} < 0. (A.10)
Combining (A.9) and (A.10), we can see that R(™ satisfies the conditions

of the integrator in Theorem 2.7 in Kurtz and Protter (1991) with 7 =
TV (a + 1). Therefore,

(S(") R™, / f S(">)dR<")> (s R, / f S)dR>

for any continuous function f.

W™ can be written as

t t t
W = [ f(sear® + [ fa(siase + [ fa(se)u
0 0 0

where f1, f2 and f3 are continuous functions. We know the joint weak con-
vergence of §(W, R(M fl(S(") f2(8™) ) [ f1(S™)dR™ and [ f2(S Sy
dS™ to S, R, f1(S), f2(S), [ f1(S)dR, and [ f2(8)dS. Since f3(S) is con-
tinuous, by Proposition VI. 1.17 in Jacod and Shiryaev (1987) and the
continuous mapping theorem,

(W™, g™, S(")) = (W, R, S).
By Theorem 2.7 in Kurtz and Protter (1991),
(W(") R, g, / FW, s<">)ds(">) (W R, S, / f(W,8) dS)
for any continuous f.
By (i), (ii) and (iii),

M = R / {h(W(n) Sy 4 (7 - u)gs(g(@,u)}dsén)

2, By - / {h(Wu, 82 + (T~ w)gs(Su )} dS, = YrWWr.
0
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Now, for Theorem 3.4, we want to show the joint convergence cf (Mi(«"), K™),
Since we assume that 6(® converges in distribution to 8 jointly with S and
R(™ the convergence is trivial from the proof of the Theorem 3.3. In case where
My = YpWr, we need the assumptions (A.7) and (A.8).
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