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UNIFYING STATIONARY EQUATIONS FOR
GENERALIZED CANONICAL CORRELATION ANALYSIS'

HyuncHEOL KANG! AND KEEYOUNG KiM?

ABSTRACT

In the present paper, various solutions for generalized canoriical corre-
lation analysis (GCCA) are considered depending on the criteria and con-
straints. For the comparisons of some characteristics of the solutions, we
provide with certain unifying stationary equations which might te also use-
ful to obtain various generalized canonical correlation analysis solutions. In
addition, we suggest an approach for the generalized canonical correlation
analysis by exploiting the concept of maximum eccentricity orizinally de-
signed to test the internal independence structure. The solutions, including
new one, are compared through unifying stationary equations and by using
some numerical illustrations. A type of iterative procedure for the GCCA so-
lutions is suggested and some numerical examples are provided to illustrate
several GCCA methods.

AMS 2000 subject classifications. Primary 62H20; Secondary 62G05.
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ables, maximum eccentricity, internal independence.

1. INTRODUCTION

Generalized canonical correlation analysis (GCCA), which involves comparing
m(> 3) sets of variables after having removed linear dependencies within each
of the sets, extends the canonical correlation analysis (CCA) of Hotelling (1936)
to the case of more than two sets of variables. There have been many studies
on how the two-set canonical solution can be generalized (Horst, 1961a, b, 1965;
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Carroll, 1968; Kettenring, 1971; Van de Geer, 1984; Ten Berge, 1988; Coppi and
Bolasco, 1989; Gifi, 1990; Melzer et al., 2001; Takane and Hwang, 2002) with
some discussions on the criteria and constraints imposed.

Suppose we have m data matrices X; (i = 1,...,m), each from a sample of size
n on p; variables. It is implicitly assumed that all the variables are standardized
to have zero means and unit variances. The problem is to find linear composites

z; = X;a; (1 = 1,2,...,m) which optimize a certain function of the covariance
matrix, ® = (¢;) (6,5 =1,...,m) of z;’s.
Criteria used to obtain the canonical loading vectors a; (i = 1,...,m) are

characterized by the associated object function defined in terms of ®. Let
Iy > 13 > -+ > I, be the ordered eigenvalues of ®. Kettenring (1971) considered
the following five criteria for selecting a;’s: (i) SUMCOR, [Maximize }["; #;;]; (ii)
MAXVAR [Maximize {1]; (iii) MINVAR [Minimize I,,,]; (iv) SSQCOR [Maximize
> ?j]; (v) GENVAR [Minimize det(®)]. In his discussion, factor-analytic mod-
els were used to motivate the criteria and comparisons among them were made.
Some of the above criteria have also been suggested by Horst (1961a, b, 1965)
and Steel (1951). Gifi (1990) studied other methods such as MINSUM [Mini-
mize )" ¢;;] and PRINCALS [Maximize 3 ;_, lk, ¢ < m]. Also Gifi suggested
OVERALS which is based on the MAXVAR criterion incorporating the nonlinear
data transformation.

Among others, GENVAR of (v) above can be recognized to have a direct
relation with the likelihood ratio statistic for testing the independence among
z;’s. Under the union-intersection principle, Schuenemeyer and Bargmann (1978)
developed a test statistic for the independence, which is the maximum attainable
eccentricity of the correlation ellipsoid generated by the given data. Now we may
add this union-intersection type of statistic applied to z;’s as a possible criterion
for the development of GCCA solution.

(vi) MAXECC: Maximize the maximum eccentricity of ®, (I1 — l,)/(l1 + lm).

The rest of this paper is organized as follows. In Section 2, we suggest an
approach for the GCCA by exploiting the concept of maximum eccentricity. In
Section 3, we provide with certain unifying stationary equations which give GCCA
solutions for various criteria mentioned in Section 1. In Section 4, a type of
iterative procedure for the GCCA solutions is suggested and numerical examples
are provided to illustrate several GCCA methods. The major findings through
the stationary equations and numerical exambles are summarized in Section 5.
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2. MAXIMUM ECCENTRICITY SOLUTION

In order to achieve a valid optimization, the criterion is usualy subjected to
certain constraints. Let R;; of size p; x p; denote the correlation matrix obtained
from data matrices (X;,X;) (4,7 = 1,2,...,m). A typical constraint is to take
var(z;) = 1, that is

aRua; =1, i=1,...,m. (2.1)

With this unit-variances constraint, ® can be interpreted as a correlation matrix
among z;’s.

The derivation of the GCCA solution for MAXECC criterion under the unit-
variances constraint reduces to finding the maximum of the maximum eccentricity
(I1 = lm)/(l1 + 1) subject to (2.1). Thus the object function g(-) to be optimized
takes the form of |

m

l - lm
——= = > mi(aiRia; ~ 1), (22)
=1

glay,...,am) =

where p;’s are the Lagrange multipliers. The partial derivative of g -) with respect
to a; is given by

o 2 o O\ o o
o2~ (L +lm)2( ™ a  oa ) 2pi Ry, (2:3)
Since
Blk
aal == Q;e,ke]kR”a], (2.4)

where e, is the it" element of e, which is the unit-normed eigenvector associated
with the k%" eigenvalue Ii, of ® (see Appendix), applying (2.4) to (2.3) and letting
it equal to zero yield the MAXECC solutions for a; which satisfies the following
equations

m
Zw,-jRijaj = ,LL;(R,‘iai, 1= 1, e,y (25)
where wi;j = €i1€j1lm — €imejml1 and pf = pi(ly + In)?/2.

3. SoME COMPARISONS THROUGH UNIFYING STATIONARY EQUATIONS

In this section, we provide with certain unifying stationary eguations which
give GCCA solutions for various criteria mentioned in Section 1. These relation-
ships can be used not only to develop the associated iterative routines but also
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to characterize the corresponding approaches. Solutions are derived under two
different types of constraints.

3.1. Solutions with unit-variances constraint

Under the constraint (2.1), by differentiating the following object function
g(-) with respect to a;,

ga,...,am) =f(ar,...,am) — Y _ mi(ajRaua; — 1), (3.1)

i=1
where f(-) stands for a criterion to be considered, we have the following form of
unifying stationary equations for each of the six different GCCA solutions,

m
Zwin»ijaj =u;Rya;, i=1,...,m, (3.2)
j=1
where
(£, for SUMCOR,
€i1€51, for MAXVAR,
€imEjm; for MINVAR,
Wi = vm (3.3)
Zk:l eikejklk, for SSQCOR,
Yok 5, for GENVAR,
\ eileﬂlm - eimejmll, for MAXECC,

respectively (see Appendix).

The stationary equations (3.2) imply that the GCCA methods differ only
by applying different weights as shown in (3.3) to obtain the desired solutions.
Therefore it could be one way to characterize each GCCA method in terms of
w;;. Clearly, MAXVAR and MINVAR emphasize the elements of eigenvectors
associated with the largest and smallest eigenvalue of ®, respectively. On the
other hand, SSQCOR, GENVAR and MAXECC incorporate eigenvalues with
eigenvector elements as the weights. In terms of the weight, SSQCOR. empha-
sizes the largeness of larger eigenvalues, while GENVAR does to the smallness of
smaller ones, which was also indicated by Kettenring (1971) and Gifi (1990). In
the meantime, MAXECC combines the two extreme eigenvalues and the associ-
ated eigenvector elements simultaneously and thus introduces some intermediate
possibility between MAX VAR and MINVAR. With this point, MAXECC should
have similar propensity to PRINCALS of Gifi (1990), but the g in PRINCALS
remains to be determined.
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3.2. Solutions with constant-sum-variances constraint

The constant-sum-variances constraint is sometimes considered as an alter-
native to the unit-variances constraint. With this constraint the canonical vari-
ates are not restricted to have identical variances, thus imposing this constraint
could result in different solutions even for the same criterion. The constant-sum-
variances constraint is given by

m
Z a/Rja; = a’Da =m, (3.4)
i=1

where a’ = (a] ...a/,) and D is a block-diagonal matrix with Ry; as its 1" block.

There is a situation where the solutions with (3.4) could be very unfair (Van de
Geer, 1984), since the solutions could be heavily dependent on the canonical vari-
ates which have relatively large or small variances. The constant-sum-variances
constraint, however, would be sometimes preferred due to relatively easy compu-
tation. Moreover, the fact that the stationary equations with this constraint take
explicit form for some criteria could be another merit to clarify the characteristics
of the criteria.

Since the constant-sum-variances constraint needs only one Lagrange multi-
plier u, the equations to solve for the solutions can be written as the following
matrix form

RD,W = uDD,, (3.5)

where R denotes the correlation matrix obtained from matrix X = (X;...X,),
D, denotes a block diagonal matrix with a; as its i*® block, and W is the matrix
with w;; of (3.3) as its (4,7)!" element.

The equation (3.5) is related to multiple corresponding analysis (Lebart et.
al., 1984). It is worth noting that the weight matrix W can be written as W =
vv’ for some criteria. That is, v is 1/y/m for SUMCOR, e; for MAXVAR, and
e, for MINVAR. Thus, for these three criteria, post-multiplying v to both sides
of (3.5) and applying the specific value of W for each, we get

D~ 2RD~'/2D'/?D,v = uD'/?D,v. (3.6)

Therefore, with the constant-sum-variances constraint, solutions for SUMCOR,
MAXVAR and MINVAR can be obtained by performing a single eigen-analysis
on D-Y/2RD~1/2, Moreover, SUMCOR. and MAXVAR solutions with (3.4) are
equivalent where the solutions are proportional to the elements of the first eigen-
vector of D™Y/2RD~1/2) and the same optimum value of Lagrange multiplier
p=1®1/m = e| Pe;.
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3.8. Some additional comparisons of GCCA methods

Both the constant-sum-variances constraint and unit-variances constraint for
MAXVAR and MINVAR criterion lead to the same results (Kettenring, 1971).
For these two criteria, if h, the first or the last eigenvectors of D™Y/2RD~1/2 s
partitioned into the successive p; x 1 subvectors, h;, then the canonical coefficient
vectors a; with any constraint are expressed as

aiziR;il/zi, i=1,...,m. o @3.7)
|||
It means that MAXVAR solution should be equivalent to the principal component
loading of D~/2RD~Y/2| actually the correlation matrix for which dependencies
within each of the sets are removed. Thus, a set of canonical variates for MAX-
VAR gives the best rank one (least squares) approximation of D~1/2RD~1/2
(Horst, 1961b). On the other hand, MINVAR tends to detect the gauge of some
linear functional relation among the variables which are transformed by removing
the within-set dependencies (Gifi, 1990).

Suppose \; and A, are the largest and the smallest eigenvalue of D~1/2RD~1/2
respectively. Then ); becomes the maximum among all possible largest eigen-
values and A; does the minimum among all possible smallest eigenvalues of ®’s
generated by any criterion, since A; and A, equal to the optimum value of MAX-
VAR and MINVAR respectively.

In summary, it is anticipated that there exists a tendency showing a certain
ascending order such as MAXVAR (SUMCOR) - SSQCOR - MAXECC - GEN-
VAR - MINVAR in terms of the degree of influence for which A; has on each
criterion (MINVAR would be affected the most by A;). And for the case of \;,
the order is reversed (MAXVAR would be affected the most by A;). Therefore this
order could be thought of representing the affinity among the criteria. In practice,
the results of all methods could be very similar when J); is relatively small but
As are far from zero. However the case that A is close to zero gives somewhat
different results. These points will be illustrated in Section 4 by examples. As
shown previously, mathematical and computational convenience indicates that
MAXVAR and MINVAR could be preferable, but the results of these two criteria
sometimes take the most opposite positions to others. Since MAXECC, how-
ever, generalizes MAXVAR and MINVAR, it can be speculated that the results
of MAXECC would take a midpoint among the methods.
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4. NUMERICAL ILLUSTRATIONS

In this section, three numerical examples are provided to illustrate the six dif-
ferent GCCA methods. As mentioned in Section 3, the similarity or dissimilarity
among the GCCA results relys heavily on the extreme eigenvalues, especially the
smallest eigenvalue, of D™/2RD~Y/2. With this point in mind, three different
types of correlation matrices (Table 4.1, 4.2, 4.3), for which ), is relatively large,
moderately small, and extremely small against ), respectively, are constructed to
see how the extreme eigenvalues of D~Y/2RD~1/2 affect the final solutions. All
examples have three sets of variables (m = 3).

The canonical weight vectors with the unit-variances constraint (2.1), a;, the
correlation coefficients of canonical variates, ¢;;, and the two extreme elignvalues
of ®, [; and I3, are presented in each table. As mentioned in $ection 3.2, the
solutions with constant-sum-variances constraint could be very unfair. Thus, for
the simplicity of comparison, only the solutions with unit-variances constraint
are displayed in each example.

The GCCA solutions with the unit-variances constraint is obtained by using
the Gauss-Seidel type of iterative procedure. The following steps describe the
routine.

Step 1. Obtain the initial values a;,o (i = 1,...,m);

Step 2. At the t*! iteration (t = 1,2,...), evaluate the stationary equations pro-
vided in (3.2) by exploiting a1 ¢,...,;-1,¢, 8541, - - -, @m.-1 and calculate
the #** updated values a;; in the due order of the subscriot i = 1,...,m;

Step 3. Repeat Step 2 until the convergence condition is satisfiec..

4.1. Case 1: R with relatively large Ag

This example (Table 4.1.A with p; = 3, p, = 4 and p3 = 2) corresponds to
the case where A\; = 1.996 and A; = 0.323 for which ) is far from zero. Therefore
most methods supposedly give very similar results overall for this ciata. MINVAR,
however, looks somewhat different from others, resulting that ¢;- is slightly large
with relatively small both ¢3 and ¢a3.

Not many comparative works have been done on a large scale. Some of them
are as follows; Horst (1961b) compared SUMCOR and MAXVAR using “Abil-
ity” data and Kettenring (1971) investigated SSQCOR, GENVAR and MINVAR
on the same data. Gifi (1990) made some comparisons using “As years go by
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study” data, indicating that SUMCOR do not perform very well, MAXVAR and
MINVAR are fair, and GENVAR and SSQCOR are possibly better, as compared
with optimum values of criteria for these methods.

TABLE 4.1 Case 1 (A = 1.996, A, = 0.323)

A. Correlation matriz

Sets I 11 111

1 062 043 |1 0.20 0.36 052 046 | 0.21 0.22
I 062 1 062 | 0.13 0.37 058 0.46 | 040 0.19
043 062 1 017 024 046 045 024 0.15
020 013 017 |1 0.16 0.17 0.16 | 0.14 0.11
I 036 037 024|016 1 048 0.36 { 0.16 0.03
0.52 058 046 | 0.17 048 1 054 | 0.29 0.25
046 046 045 | 0.16 036 054 1 0.28 0.15
III 021 040 024 | 014 016 029 028 {1 0.08
022 019 015 0.11 003 025 0.15 | 008 1

B. GCCA results

SUMCOR | MAXVAR | SSQCOR | MAXECC | GENVAR | MINVAR

0.313 0.331 0.355 0.433 0.404 0.446

ay 0.627 0.602 0.570 0.460 0.502 0.440
0.211 0.223 0.238 0.287 0.269 0.297

0.149 0.142 0.132 0.105 0.114 0.099

as 0.017 0.031 0.050 0.110 0.088 0.120
0.691 0.685 0.675 0.638 0.653 0.633

0.381 0.383 0.385 0.397 0.392 0.397

aj 0.820 0.819 0.819 0.816 0.817 0.975
0.510 0.511 0.513 0.516 0.516 —0.314

$12 0.666 0.668 0.671 0.677 0.676 0.677
P13 0.413 0.411 0.408 0.397 0.402 0.261
P23 0.397 0.396 0.395 0.389 0.391 0.247
L 1.996 1.996 1.995 1.989 1.992 1.832

ls 0.334 0.331 0.328 0.323 0.324 0.323

In fact, all these results are easily expected since the two real data explored
belong to the situation where Case 1 takes. Specifically the smallest eigenvalue of
D~1/2RD~1/2 turn out to be 0.235 for “Ability” data and 0.387 for “As years go
by study” data. But, in Table 4.1.B, it is quite interesting to observe the fact that
MAXECC gives basically proximate results as SUMCOR, MAXVAR, SSQCOR
and GENVAR but it shows a tendency to lean slightly toward MINVAR.
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4.2. Case 2: R with moderately small X

For this example (Table 4.2.A with p; = 3, p2 = 3, p3 = 3, \; = 2.459 and
As = 0.144), the smallest eigenvalue of D-!2RD~!/2 js moderately small. Thus
one can expect that methods give quite different results.

TABLE 4.2 Case 2 (A, = 2.459, A; = 0.144)

A. Correlation matrix

Sets I 11 111

1 025 027|044 0.18 0.19 | 043 037 0.28
I 025 1 040 | 0.14 0.65 0.26 | 0.19 0.53 0.36
0.27 040 1 018 041 061 | 0.23 047 261
044 014 018 |1 009 0.15 ] 0.8 025 1219
1I 018 065 041 | 009 1 0.30 | 0.10 054 239
0.19 026 061015 030 1 0.18 044 350
043 019 023|085 010 018 |1 0.29 2.25
IIT | 0.37 053 047 | 0.25 054 044 [ 029 1 2.43
028 036 061 ) 019 0339 050 ) 025 043 1\

B. GCCA results

SUMCOR | MAXVAR | SSQCOR | MAXECC | GENVAR | MINVAR
0.318 0.319 0.323 0.745 0.391 —0.026
a 0.426 0.425 0.424 0.221 0.393 0.728
0.590 0.589 0.588 0.341 0.565 0.464
0.414 0.417 0.422 0.948 0.536 0.990
az 0.558 0.557 0.554 0.111 0.494 —0.024
0.497 0.497 0.495 0.143 0.460 0.067
0.299 0.301 0.306 0.917 0.415 0.948
as 0.557 0.556 0.555 0.153 0.515 0.105
0.462 0.461 0.459 0.081 0.413 0.052
P12 0.712 0.712 0.711 0.503 0.691 0.188
P13 0.729 0.729 0.729 0.529 0.719 0.312
P23 0.748 0.748 0.749 0.851 0.771 0.846
I 2.459 2.459 2.459 2.270 2.454 1.975
I3 0.250 0.249 0.248 0.148 0.226 0.144

We note that the correlation coefficient between the first variaole for the sec-
ond (II) and the third (III) set in Table 4.2 looks very high (0.8%). Firstly it is
observed, in Table 4.2.B, MINVAR shows very much different results. In the last
column of Table 4.2.B, the canonical weights corresponding to the first variable
for the second (II) and the third (III) set are dominant, 0.990 and 0.948 respec-
tively, resulting that the canonical correlation coeflicients between the second
and the third set, ¢o3 = 0.846, is very large. While, the results of SUMCOR,
MAXVAR and SSQCOR are indistinguishable on the whole and provide almost
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the same level of canonical correlations, and GENVAR appears similar to those
of SUMCOR, MAXVAR and SSQCOR. Thus, for this case, SUMCOR, MAX-
VAR, SSQCOR and GENVAR would not provide sufficiently reasonable results
to outline the structure of R.

On the other hand, MAXECC again gives intermediate results which seem
to summarize properly the characteristics of R in the view of having dominantly
large ¢3=0.851. Here ¢12 and ¢13 of MAXECC are of moderate size but notice-
ably smaller than those of SUMCOR, MAXVAR and SSQCOR. Thus, for this
case, MAXECC could be a preferable choice for the good representation on the
information contained in R.

4.8. Case 3: R with near zero Ag

Table 4.3.A (with p; =4, po = 2, p3 = 3, \; = 2.160 and A; = 0.003) is the
case where the smallest eigenvalue of D~Y/2RD~1/2 is extremely small.

Table 4.3.B shows that the six methods separated into two clearly different
groups. The first three methods (SUMCOR, MAXVAR and SSQCOR) form
one group, and the rest (MINVAR, MAXECC and GENVAR) of them another.
Notable difference between those two groups lie in the composition of a; and
ap. This distinguishable patterns of the canonical weights may, in turn, cause
large differences in the corresponding values of the ¢;;’s. For the second group
of methods, all ¢12’s take negative, even they are relatively small while ¢13’s are
a little inflated. In all, observing that the differences in the elements of Ri2 and
R;3 are negligible, the gap between ¢12 and ¢;3 in the second group of methods
seems to be unreasonable.

5. REMARKS

Considering the characteristics given by three examples above, the followings
are summarized: (1) When A, is relatively large, no significant difference exists
among methods. (2) Typically used methods such as SUMCOR, MAXVAR,
SSQCOR and GENVAR do not always provide sufficiently reasonable results to
outline the structure of R, especially for the case of moderately small A;. This
situation can occur quite often in reality. (3) MINVAR generally goes to an
extreme in all cases. (4) MAXECC tends to give the acceptable range of results
unless A; is very close to zero. And thus MAXECC could be a preferable choice
for the good representation on the information contained in R, especially when
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TABLE 4.3 Case 3 (A, = 2.160, A, = 0.003)

A. Correlation matriz

153

Sets I II III
1 036 0.18 0.02 | 002 0.05| 040 063 .34
I 036 1 0.12 0.18 | 0.33 0.24 | 0.69 042 ).17
018 0.12 1 036 | 0.38 0.63 | 0.10 0.15 .14
0.02 018 036 1 0.64 044 | 0.10 0.08 .07
I 0.02 033 038 064 |1 0.88 | 0.14 0.07 2.13
005 024 063 044 | 088 1 0.17 014 92.20
040 069 010 010 ] 0.14 017 |1 0.85 .30
II1 063 042 015 0.08 | 007 014|085 1 ).08
034 017 014 0.07 | 013 020 | 0.30 0.08 1
B. GCCA results
SUMCOR | MAXVAR | SSQCOR | MAXECC | GENVAR | MINVAR
0.639 0.699 0.741 0.944 0.944 0.944
a; —0.686 —0.750 —0.816 —0.842 —0.842 —0.842
0.546 0.456 0.353 —0.101 —-0.101 —0.102
—-0.417 -0.340 —0.263 0.105 0.105 0.106
as —2.093 —2.102 —2.102 —0.631 —0.631 —0.633
1.951 1.905 1.795 1.509 1.510 1.511
—1.977 —2.012 —2.052 —1.987 —1.987 —1.987
as 1.898 1.896 1.881 1.912 1.912 1.912
0.692 0.668 0.636 0.669 0.669 0.669
@12 0.626 0.570 0.513 -0.114 -0.115 -0.115
d13 0.817 0.871 0.913 0.966 0.966 0.966
P23 0.246 0.239 0.228 0.132 0.132 0.133
I 2.156 2.160 2.155 1.966 1.966 1.966
I3 0.080 0.057 0.037 0.003 0.003 0.003

there is no definite ground available telling us how to choose a criterion. (5)
When ), is sufficiently small, any method of SUMCOR, MAXVAR or SSQCOR

is recommended.

APPENDIX : PROOF OF THE EQUATIONS (2.4) AND (3.3)

Since I is a function of ¢y,’s (u > v), we have, by using the chain rule,

Proof of the Equation (2.4)

alk . N 8lk a¢uv
Oas; B Z Z ad)uv Oag; ’

u=1v<u

(A1)
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where ag; is the s element of a;. The first differential term in the right-hand
side of (A.1) becomes (Magnus and Neudecker, 1988),

ol o o® e
o "N "
_J e Juuer =€, u=v,
e;c(-]uv + Jou)er = 2eypeur, U F v,

where J,, stands for a matrix with (A.1) in the (u, v)?" place and zeroes elsewhere.
By denoting p¢ry, the (h,t) element of R, we have

Pu DPu

buy = a;R»uvav = Z Zahu htTuv Gty (A3)

h=1 t=1
Therefore the differential d¢,,/0as; takes the following form;

( Pi Pi

> stri an + Z Qhi hsTii, ©=U=U,

t=1 h=1

Du

Ouy _J Zstriv aty, 1=wuandi#v, (A.4)

Z Ghy hsTui 17‘4 v and i = v,
h=1
L0, i#wuandi#v.

Substituting (A.2) and (A.4) into (A.1), we have

ol i Pi
k Z 2 Z 2
- € stTii @i + €% hsTii Qhi
t=1 h=1

aa‘sz
i—1 pv

+22 Zeikevk stTiv Qty (A5)

v=1 t=1

m Pu
+2 Z Zeikeuk hsTui Qhu-

u=i+1 h=1

Since ¢7j; = st74j, we finally obtain

ol m Pj )
ko 2 Z Z €ikEjk stTij Otj. (A6)

Oasi j=t t=1

The proof is completed when we generalize the result (A.6).
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Proof of the Equation (3.3)

The criterion for each of six GCCA solutions can be written as

i3 bij — > 15 aiR;ja;, for SUMCOR,
l, for MAXVAR,
f ) U, for MINVAR, An
O=1smg—sm 2 for SSQUOR, (A7)
det(®) = T1i; U, for GENVAR,
| 5, for MAXECC.
1+Hm

Using the equation (2.4), for each of six GCCA solutions, the partial derivative
of f(-) with respect to a; is given by

( 2 i R;jaj,
=1

2 Z eirejiRi;a;,
_7 1
2 Z szeijaJa]a
= (A.8)
4 Z Z elke]klle]a])

glkl

22262’“61’“(1 (@ )R,-jaj,

] 1 k=1

eit€i1lm — eimeimli
22 11€5 imCjim Rijaj-
\

of
631;

ll + lm)2

Thus letting the partial derivative of g(-) with respect to a; equal to zero, after
some calculation by applying the equation (A.8), yields the equasion (3.3).

REFERENCES

CARROLL, J. D. (1968). “Generalization of canonical correlation analysis to three or more sets
of variables”, Proceedings of the American Psychological Association, i3 227-228.

Coppl, R. AND BOLASCO, S. (1989). Multiway Data Analysis, North-Holland, Amsterdam.

GrrF1, A. (1990). Nonlinear Multivariate Analysis, John Wiley & Sons, Chichester.

HorsT, P. (1961a). “Relations among m sets of measures”, Psychometrika. 26, 129-149.

HorsT, P. (1961b). “Generalized canonical correlations and their applications to experimental
data”, Journal of Clinical Psychology, 17, 331-347.



156 H. Kang AND K. KIM

HorsT, P. (1965). Factor Analysis of Data Matrices, Holt, Rinehart and Winston, New York.

HoTELLING, H. (1936). “Relations between two sets of variates”, Biometrika, 28, 321-377.

KETTENRING, J. R. (1971). “Canonical analysis of several sets of variables”, Biometrika, 58,
433-451.

LEBART, L., MORINEAU, A. AND WARWICK, K. (1984). Multivariate Descriptive Statistical
Analysis. Correspondence Analysis and Related Techniques for Large Matrices, John
Wiley & Sons, New York.

MagNus, J. R. AND NEUDECKER, H. (1988). Matriz Differential Calculus with Applications
in Statistics and Econometrics, John Wiley & Sons, Chichester.

MEeLzER, T., REITER, M. AND BiscHoF, H. (2001). “Nonlinear feature extraction using
generalized canonical correlation analysis”, Proceedings of the International Conference
on Artificial Neural Networks, 353—360.

SCHUENEMEYER, J. H. AND BARGMANN R. E. (1978). “Maximum eccentricity as a union-
intersection test statistic in multivariate analysis”, Journal of Multivariate Analysis, 8,
268-273.

STEEL, R. G. D. (1951). “Minimum generalized variance for a set of linear functions”, The
Annals of Mathematical Statistics, 22, 456-460.

TAKANE, Y. AND HWANG, H. (2002). “Generalized constrained canonical correlation analysis”,
Multivariate Behavioral Research, 37, 163--195.

TEN BERGE, J. M. F. (1988). “Generalized approaches to the Maxbet problem and the Maxdiff
problem, with applications to canonical correlations”, Psychometrika, 53, 487-494.

VAN DE GEER, J. P. (1984). “Linear relations among k sets of variables”, Psychometrika, 49,
79-94.



