DOI QR코드

DOI QR Code

ENERGY DECAY ESTIMATES FOR A KIRCHHOFF MODEL WITH VISCOSITY

  • Published : 2006.05.01

Abstract

In this paper we study the uniform decay estimates of the energy for the nonlinear wave equation of Kirchhoff type $$y'(t)-M({\mid}{\nabla}y(t){\mid}^2){\triangle}y(t)\;+\;{\delta}y'(t)=f(t)$$ with the damping constant ${\delta} > 0$ in a bounded domain ${\Omega}\;{\subset}\;\mathbb{R}^n$.

Keywords

References

  1. M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates Filho and J. A. Soriano, Existence and exponential decay for a Kirchhoff-Carrier model with vis- cosity, J. Math. Anal. Appl. 226 (1998), no. 1, 40-60 https://doi.org/10.1006/jmaa.1998.6057
  2. G. Chen, Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain, J. Math. Pures Appl. 58 (1979), no. 3, 249-273
  3. G. Chen and D. L. Russell, A mathematical model for linear elastic systems with structural damping, Quart. Appl. Math. 39 (1982), no. 4, 433-454 https://doi.org/10.1090/qam/644099
  4. R. M. Christensen, Theory of Viscoelasticity, Academic Press, New York, 1971
  5. Julio G. Dix, Decay of solutions of a degenerate hyperbolic equation, Electron. J. Differential Equations 1998 (1998), no. 21, 1-10
  6. G. C. Gorain, Exponential energy decay estimate for the solutions of internally damped wave equation in a bounded domain, J. Math. Anal. Appl. 216 (1997), no. 2, 510-520 https://doi.org/10.1006/jmaa.1997.5678
  7. I. H. Jung and Y. H. Lee, Exponential Decay for the solutions of wave equation of Kirchhoff type with strong damping, Acta Math. Hungar. 92 (2001), no. 1-2, 163-170 https://doi.org/10.1023/A:1013768414495
  8. G. Kirchhoff, Vorlesungen uber Mechanik, Teubner, Leipzig, 1883
  9. V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl. (9) 69 (1990), no. 1, 33-54
  10. I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differential Integral Equations 6 (1993), no. 3, 507-533
  11. J. E. Lions, On some questions in boundary value problems of mathematical physics : in International Symposium on Continuum Mechanics and Partial Dif- ferential Equations, Rio de Janeiro, 1977, Noth-Holland, Amsterdam, 1978
  12. J. Y. Park and I. H. Jung, On a class of quasilinear hyperbolic equations and Yosida approximations, Indian J. Pure Appl. Math. 30 (1999), no. 11, 1091- 1106
  13. J. Y. Park, I. H. Jung, and Y. H. Kang, Generalized quasilinear hyperbolic equa- tions and Yosida approximations, J. Aust. Math. Soc. 74 (2003), no. 1, 69-86 https://doi.org/10.1017/S144678870000313X
  14. J. Quinn and D. L. Russel, Asymptotic stability and energy decay for solutions of hyperbolic equations with boundary damping, Proc. Roy. Soc. Edinburgh. Sect. A 77 (1977), 97-127
  15. Y. Yamada, On some quasilinear wave equations with dissipative terms, Nagoya Math. J. 87 (1982), 17-39 https://doi.org/10.1017/S0027763000019929
  16. E. Zuazua, Stability and decay for a class of nonlinear hyperbolic problems, As- ymptotic Anal. 1 (1988), no. 2, 161-185

Cited by

  1. Global Existence and Energy Decay Rates for a Kirchhoff-Type Wave Equation with Nonlinear Dissipation vol.2014, 2014, https://doi.org/10.1155/2014/716740
  2. Stabilization of the Kirchhoff type wave equation with locally distributed damping vol.22, pp.5, 2009, https://doi.org/10.1016/j.aml.2008.08.009