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ENERGY DECAY ESTIMATES FOR A
KIRCHHOFF MODEL WITH VISCOSITY

IL Hyo JUNG* AND JONGSOOL CHOI1

ABSTRACT. In this paper we study the uniform decay estimates of
the energy for the nonlinear wave equation of Kirchhoff type

y'(t) — M(IVy(®)*)Ay(t) + 6y (8) = f (1)
with the damping constant § > 0 in a bounded domain Q C R™.

1. Introduction

Let §2 be a bounded in R"(n > 1), having a boundary I' := 9 of class
C? such that I' = T'gUT; and ToNT; = . We denote by v(respectively,
0/0v) the unit normal of ' pointing into the exterior of  (respectively,
the normal derivative). Let z° be an arbitrary but fixed point in R and
set £(z) =z — 20,z € R",

(1.1) R = sup{|lz)|:z € Q},
(1.2) Iy = {ze€l|{(z) v(z) <0} and
I = {zeTl(z) v(z) > 0}#0),
where u.v will denote the usual inner product for any u,v € R™.
Let M(-) € C*([0,00),R) be a function such that

(1.3) M(t)>mp >0 forallt>0,

where mg is a constant.
Now we will consider the following nonlinear damped wave equation
of Kirchhoff type:

(1.4) y'(t) = M(IVy ()" Ay(t) + 6y (¢) = f(2) in 2 x (0, 00)
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with the undamped mixed boundary conditions;

(1.5) y(t) =0 on Ty x (0,00)
(1.6) %2 =0 onTy x (0,00)
(1.7) y(0) =y, ¥'(0) =31 in Q,

where 4 > 0 is a constant.

The motivation which the problem (1.4)-(1.7) has attracted the at-
tention of several researchers (see [1], [3], [5]-[10], [12]-[16] and references
therein) is of its intimate connection with a mathematical model for the
transverse deflection of an elastic string of length L > 0 whose ends are
held a fixed distance apart are written in the form of the hyperbolic
equation :

u(z,t L
PO (ons

which was proposed by Kirchhoff (8], where u(z,t) is the deflection of
the point z of the string at the time ¢ and o > 0, B are constants. We
introduce the energy

2 2
Ou(z,t) d:c) 0“u(z, t) ~0,
ox

or2

(1.8) E(t) = [l )1 + M(IVy(@)1*)],

N =

where M(s) = [; M(t)dt.
Note that from assumption on M(:) the energy E(t) satisfies

(19) SV 0P + molVy()P) < B(t).

The main purpose of this paper is to give the uniform decay estimates
for the problem (1.4)-(1.7) under certain appropriate hypotheses.

Problems with the undamping, that is, § = 0 or with the damping
occurring in the boundary and M (-) = 1 were studied by many authors;
Quinn and Russel [14], Chen [2], Lions [11], Lasiecka and Tataru [10],
Komornik and Zuazua [9]. They had obtained a uniform decay result of
the form :

E(t) < Ce™™E(0), t >0,

where C > 1 and a > 0 being some constants. On the other hand,
Gorain [6] has considered the stability of the solution of strong damped
wave equation with M(-) =1 and f(¢) =0 in (1.4), —6Ay/(¢) instead of
0y (t), and homogeneous boundary conditions. Later, when f(¢) # 0 in
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(1.4), Cavalcanti et al. [1] treated stability problems with nonhomoge-
neous conditions, that is,

0 ,0y(

vy 22 4 2O, _ gy 0)

ov

instead of (1.6) and strong damping —Ay'(t). They has obtained the
exponential decay using the perturbed energy method under some appro-
priate assumption on f and g. Also, Jung and Lee [7] obtained uniform
decay estimates for the strong damped wave equations with homoge-
neous boundary conditions (1.5)-(1.7). They used a direct method as
the method of proof, which is based on some integral inequalities; see for .
example, Komornik and Zuazua [9]. Since we do not have any informa-
tion about the influence of the inner products (f(t),-)r,(q) and about
the sign of the derivative of E(t), it is very difficult to treat stability
problems for nonhomogeneous cases.

Note that the problem considered here is a generalization of the ab-
stract dynamical system with the internal damping term which is always
present in actual systems(see [4]). Furthermore our study can be applied
to the linear damped extensible beam equation.

2. Preliminaries and main result

We first introduce some notations which will be used throughout this
paper. Let Ly(£2) be the space of square integrable with inner product

(+,-) and norm | - |. For any non-negative integer m, H™({2) denotes the
usual Sobolev space of order m and H§*(Q?) is the closure of C§°(Q) in

From now on, we will denote

(y(t), 2(t)) :=/Qy(t)2(t)dx and (y(t), 2(t))z : / y(t)z(t)dl,

Before stating our main results, let us recall the following result,
which says existence of the regular solution for the problem (1.4)-(1.7)
using the Yosida approximation method and its proof can be found on
Theorem 5.1 in [13](see also [12]).

We put

D) = {(wor 1, ) - 1B0] <7 |V9a] < 7, /0 V1ldt <,

where (yo,yl,f) € (H*(Q) N Hy(Q)) x H5(Q) x (L*([0,00); HF () N
L%([0, 00); La(92))).
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Then we have :

THEOREM A. Let f(t) € C([0,00); L2(f2)). Then there exists a yo(>
0) satisfying the following: For any (yo,v1,f) € D(v), there exists a
unique solution y(t) on [0, 00) to the problem (1.4)-(1.7) and the solution
y(t) satisfies

y(t) € C([0, 00); H2(2)NHg (2))NC* ([0, 00); Hy (2))NC3([0, 00); L2(12)).-
Furthermore, there exists a positive constant K such that

(2.1) |Ay(t)| < K and |Vy'(t)] < K for all t > 0.

We now state the main result.

THEOREM B. Let y(t) be a regular solution to the problem (1.4)-(1.7).
If we assume that

t
(2.2) /0 eCs| £(s)2ds = O(%), t — o0

hold for some positive constants C(e) depending on € > 0 (see (3.12))
and o > 0, then there exist a positive constant ¢y such that, for all
€€ [0, 60)

(2.3) E(t) =0 (e—c(f>t) as t — oo.

In particular, if f(¢) = 0, then we have

COROLLARY. Let y(t) be a regular solution to the problem (1.4)-(1.7)
with f(t) = 0. Then the energy E(t) < De~CE(0) for all t > 0 and
some constant D > 0, independent of 6.

3. Proof of main theorem

In this section we shall prove the main theorem by using the multi-
pliers technique and some integral inequalities.
Before proving the main result, we will give the following lemmas.

LEMMA 3.1. Let E(t) be the energy given by (1.8). Then the deriv-
ative E'(t) of E(t) satisfies the following equality;

(3-1) E'(t) = —oly' &)1 + (F(t), ' (1))
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Proof. From (1.8) and using Green’s formula, we have
E't) = "),y ) +MVy®)*)(VY (1), Vy(t)
D~ sl @) + (£0),9/ ).

%y
M(IVyO)P) (), -,
Considering boundary conditions (1.5) and (1.6), we obtain our result.
O

Let us define the positive constant A; by
(3.2) y(®)1* < M[Vy@OF (A > 1),

which arise due to Poincaré.

LEMMA 3.2. We have the following inequalities;

V1
(3.3) [¥(@)] < N

(34) ¥'(t) < ~LoB(t) - 8(y'(t),y()) + (f(1), y(1) +2ly' @)%,

where the function v(t) is given by
(3.5) P(t) = (¥'(8),y(t))

and Lg is some positive constant.

E(t),

Proof. Simple calculations using the Schwarz inequality, (3.2), and
[Vy(t)]? < M(|Vy(t)|?)/mo, show that
<YM
< s
and hence by the Young inequality we obtain (3.3).

In order to prove (3.4), we first note that by (1.4) the derivative of
¥(t) is given by
(36) Y1) = @'®v0)+WOP

= M(IVy(®)]*)(Dy(t),y(8) - 6('(8), y (1))
+(f(®), y(®) + Iy ().

Using Green’s formula and the inequality,

(mo/m)M([Vy(t)[*) < M(IVy()[*)Vy(®)P,

()] Iy (&) [P (|Vy(2)|2)] /2
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we obtain by (3.6),

VO = —MOVUOPITYEL oW/ 0,96) + (0, v0) + 1y OF
< ( M(IVy@OP) + Iy (0F) - 0/ (8), (1))
000 + 2 O
< —TRE) - 5(6/(0) () + (7 ¥(e) + 25 OF
— o)~ 50,006 + (0, u(0) + 20O
where Ly = 2mg/m1(> 0). The proof is completed. O

We are now in a position to prove the main result.

Proof of Theorem B. Let € be any nonnegative number.
We define the perturbed function H¢(t) by

(3.7) H(t) = AE(t) + ey (t),

where ) is fixed and satisfies

va
Vo

From (3.3), (3.7) and (3.8), for some A(we may choose A as A =
2ev/A1//Mo), we have

(3.9) 2E(t) < Hl{t) < 27E()

for all t > 0.
Differentiating (3.7) with respect to ¢, applying Lemmas 3.1 and 3.2
and using the Young inequality, for any p > 0, we obtain

H(t) = AE'(t)+ep/(t)
< _A5|y’(t)|2+—%|f(t)|2

(3.8)

A€
+ WP

)
—eLoE(t) + €6 + Dap|Vy(t)[? + ﬁly'(ﬂﬁ
/ 2 i 2
+2ely () + 17 (2)

A )
= /(4|2 172
Ay ()] +€<2 +4N+2)|y (t)]

—eLoBB(t) + (6 + D:ulVy ()P + (5 + S

(Io+ 1) + (Io + I3) + 14.
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Choosing u = moLo/(2(0 + 1)\;) and simple calculations using (1.9)
yield

L+1I; < —e(Lo—e(d+ DAmg ' p)E(t) = —%QGE(t)

and

A S+ 1A
L+1 < (—,\6+e(—+—(—+—ﬁ

/ 2
<
R +2) )l @1 <o,

where € < €1 :=A/N (N = X/2+ (6 + 1)\1/(2mpLy) + 2).
Define ¢y > 0 by
)x mo
s

€ = min {61,
Then we obtain for € € [0, ),

(3.10) HI(t) £ - 22eB() + OO 8, 9150,

where C(X, 8,€) = A/2e + €(6 + 1)X1/(2moLyg).
From (3.9) and (3.10), we also have

(3.11) H!(t) + 7 Lo eH (t) < C(\, 6, )| f(1)]%

Consequently, multiplying (3.11) by e{fo/4Met

we get

and integrating over (0, t),

t
H(t) < (H(0)+ C(A,6,¢) / eBes| f(5)ds)e= et
0
Taking (3.9) into consideration, we can see that
t
(3.12) fz\-E(t) < (20B(0) + O(6,¢) / e8| f(5) s ).
0

Thus our proof is completed from the above inequality and assumption
(2.2). ]

FURTHER REMARK. Adding the perturbed function H(t) to p(t) =
(¥'(t), £.Vy(t)) in (3.7), we may determine an upper bound of the value
of § consistent with stability(cf. [6]).
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