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BALANCEDNESS AND CONCAVITY OF
FRACTIONAL DOMINATION GAMES

Hye KyunGg KiM AND QIzHI FANG

ABSTRACT. In this paper, we introduce a fractional domination
game arising from fractional domination problems on graphs and
focus on its balancedness and concavity. We first characterize the
core of the fractional domination game and show that its core is
always non-empty taking use of dual theory of linear programming.
Furthermore we study concavity of this game.

1. Introduction

In this paper we investigate a kind of cooperative cost game that
arises from fractional domination problems on graphs. Domination prob-
lems are widely studied in graph theory. A comprehensive overview on
domination problem is provide by [5], [6].

Given a graph G = (V, F;w) with vertex set V, edge set E and
weight function w : V. — Ry, a function f : V — [0,1] is called a
dominating function of G if for each vertex v € V, 3° - Nl S (u) > 1,
where N[v] = {v}U{u € V : (u,v) € E} is the closed neighborhood of v
in graph G. The fractional domination problem is to find a dominating
function f which minimizes the total weight > . f(v)w(v).

The fractional domination game problem has many practical appli-
cations. For example, let G = (V,E) be a graph in which vertices
represent cities and edges represent pairs of cities they are neighbors.
Suppose each city has a service station, such as blood bank and gas sta-
tion, which may be used to store certain amount of resources. Suppose
those stations in different cities have different cost for the storage of each
unit of resources. Then the problem is to decide the storage amount of
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resources which is placed with minimum total cost in each station, such
that each city can be supported or rescued by sufficient amount of re-
sources from the stations in its own city and its neighboring cities when
necessary. This example can be formulated as a fractional domination
set problem on the connection graph G among the cities.

On the other hand, a natural question arising from the above exam-
ple is how to allocate the total cost of the resource storage among all
the participating cities. In this paper, we introduce a closely related
cooperative cost game, the fractional domination game, to model the
cost allocation problem and focus on the balancedness and concavity of
this game model.

Various fairness and rationality requirements proposed for the allo-
cations of total cost derive many solution concepts in cooperative game
theory. Among all the solution concepts, the core is the most important
one which has been extensively studied in many game models. The main
technique used in this work is linear program duality characterization
of the core of our fractional domination game. This technique has of-
fered much for cooperative games. Shapley and Shubik [10] formulated
a two-sided market as the assignment game, and showed that the core
is exactly the set of optimal solutions of a linear program dual to the
optimal assignment problem. This approach is further exploited in the
study of linear production game [2, 7], partition game [4], packing and
covering games (3], and recently dominating set games [11]. Velzen [11]
introduced three kinds of cooperative games that arise from the weighted
minimum dominating set problem on graphs. It was shown that the core
of each game is non-empty if and only if the corresponding linear pro-
gram relaxation of the weighted minimum dominating set problem has
an integer optimal solution, and in this case, an element in the core can
be found in polynomial time.

This paper is organized as follows. In section 2, we give some notions
from cooperative game theory and introduce a cooperative game that
models the cost allocation problem arising from fractional domination
problems on graphs. In section 3, we present a characterization of the
core elements of the fractional domination game and show that the core
equals the set of the optimal solutions to the dual linear program of
fractional domination problem. It follows that finding a core element
can be carried out in polynomial time. In the final section, we study the
concavity of the fractional domination game.
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2. Definition of fractional domination game

In this section, we introduce a kind of cooperative cost games that
models the cost allocation problem arising from fractional domination
problems on graphs. We begin with some concepts and notions in coop-
erative game theory.

2.1. Cooperative game theory

A cooperative game (in characteristic function form) I' = (N, ¢) con-
sists of a player set N and a characteristic function ¢ : 2¥ — R with
¢(0) = 0. For each coalition S C N, ¢(S) represents the revenue or cost
achieved by the players in S together. The main issue is how to fairly
distribute the total revenue or cost ¢(N) among all the players. We
present the definition here only for cost games, with the understanding
that symmetric statement also holds for revenue games.

A vector z = {z1,22,...,2,} is called an imputation if and only if
Yien % = ¢(N) and z < c({i}). The core of a game I' = (N,¢) is
defined by

Core(I') = {z € R" : 2(N) = ¢(N) and z(S) < ¢(S), VS C N},

where 2(S) = >,.5 2 for S C N. The constraints imposed on Core(T"),
which is called group rationality, ensure that no coalition would have an
incentive to split from the grand coalition NV, and do better on its own.

The study of the core is closely associated with another important
concept, the balanced set. The collection B of subsets of N is balanced
if there exists a set of positive numbers g (S € B), such that for each
i € N, we have >, .qcpfs = 1. A game (N,c) is called balanced if
> senBsc(S) < ¢(N) holds for every balanced collection B with weights
{Bs : S € B}. With techniques essentially the same as linear program-
ming duality, Bondareva [1] and Shapley [9] proved that a game has
non-empty core if and only if it is balanced.

A cooperative game I' = (N, ¢) is called concave if it holds that

c(S) +¢(T)>c(SUT)+¢(SNT) forall §,T € 2V,

It is easy to check that I' = (N, ¢) is concave if and only if for all 7,5 € N
with i # j and S € N\ {4,;}, it hold that

c(SU{i}) — c(S) 2 ¢(SU {3, 5}) — (S U {5}).
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That is to say, for a concave game the marginal contribution of a player
to any coalition is at most his marginal contribution to a smaller coali-
tion. Shaply [8] showed that the core of a concave game is always
nonempty.

2.2. Fractional domination games

Let G = (V, E) be an undirected graph with vertex set V and edge
set E. Two distinct vertices u,v € V are called adjacent if (u,v) € E.
For any non-empty set V' C V, the induced subgraph by V', denoted by
G[V'], is a subgraph of G whose vertex set is V' and whose edge set is
the set of edges having both endpoints in V’. The closed neighborhood
of vertex v € V is N[v] = {u € V : (u,v) € E} U{v}. For any subset
S C V, we define the closed neighboring set of S to be the union of the
closed neighborhoods of all vertices in S, denoted by N[S] = |J,cqg N[v].

Given a graph G = (V, E; w) with vertex weight functionw : V. — R,
a function f : V — [0,1] is a fractional dominating function of G if for
every vertex v € V, 3 N f (u) > 1. Thus, if S is a dominating set
of graph G and we define the function f where f(v) = 1if v € § and
f(wy=01if v € 5, then f is a dominating function of G. In the rest of
this paper, for convenience, we denote 3, ¢ f(u) and f(i) by f(S) and
fi, respectively.

The fractional domination problem is to find a fractional dominat-
ing function f which minimizes the total weight » . f(v)w(v). The
minimum weighted domination number v*(G) is defined as the mini-
mum value }_ i f(v)w(v) among all fractional dominating function f
of graph G. Now, we introduce a cooperative game that models the cost
allocation problem arising from fractional domination function prob-
lem. Given a weighted graph G = (V, E;w) with vertex weight function
w:V — Ry, the fractional domination game I' = (IV, ¢) corresponding
to graph G is defined as follows:

1. The player set is N =V = {1,2,...,n};

2. For each coalition § C N,

c(S) =min{ > f(i)w() | f: V= [0,]]and > f(i) > 1, Vj € S}.

€8 1€ENT[FINS

That is, the cost ¢(S) incurred by the coalition S is the minimum
weighted domination number of the induced subgraph G[S]. Our pur-
pose is to discuss the allocations of the total cost ¢(N) among the par-
ticipating players based on the core of this game model. '
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3. Balancedness of fractional domination game

In this section we first present a characterization of the core for the
fractional domination game. Furthermore, we show that the core of this
game is always non-empty. To this purpose, we first introduce two kinds
of vertex subsets. Let G = (V, E) be a graph. The closed neighborhood
of a vertex v € V in G is called v-star. If T' C N[v] contains v, then T is
called a v-substar. The set of all v-substars in G is denoted by 7y, i.e.,
T, ={T CV | T is a vsubstar}.

For a dominating set D of graph G = (V, E), it is easy to see that
the vertex set V can be covered by disjoint v-substars with v € D, i.e.,
V = UpepTv, where T, € T, and T, N T, = @ if u # v in D. In
the following lemma, we extend this intuitive result to a dominating
function f of graph G. We will show that the vertex set V can be
“exactly” covered by a collection of substars induced by the function f.
In fact, the proof of the following lemma gives a method to construct
such a collection of substars.

LEMMA 3.1. Let f : V — [0,1] be a fractional dominating function
of graph G = (V,E). Then for each v € V, there exists a set of v-
substars induced by f, denoted by vl , and a real valued weight function
by T — R, such that

i) Z 2,(T) = f(v), and
TeT
(ii) for every vertex u € V, the total weight of substars contain-

ing vertex v in the collection T = {Z,f v € V} equals 1, ie,

Y am=1

veV yereTd

Proof. Since f : V — [0,1] is a fractional dominating function of
graph G, for each vertex v € V we have 3 N[v] f(u) > 1. Hence for
each vertex v € V, we define the contribution value n¥(u) of each vertex
u in G being used to ensure vertex v to be “exactly” dominated. That is,
the contribution of all the vertices in V to vertex v is a set of nonnegative
values {n"(u) : u € V'} such that:

"(v) = f(v)
<n¥(u) < f(u) for ue N\ {v}
Y(u) =0 for u ¢ N[v]

(3.1)

dOd
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(3.2) > n(u) =1.

uEN]

Obviously, the set of values {n*(u) : u € V} satisfying formulas (3.1)
and (3.2) exists.

For each vertex v € V, we count on the positive values occurring in
the set {n*(v) : u € V'} which is the contributions of vertex v to be used
to ensure all vertices u € V to be “exactly” dominated, and arrange
these values in the increasing order, say, 0 <7} <9} < --- < n¥ = f(v).
Then we construct a set of v-substars 7§ which contains s v-substars
and the corresponding weight function ¢, : ’Z{,f — R, as follows:

Ty ={ue€ N[p]:n"(v) 2ni}  &(Tu) =n7
Ty = {u € N['U] : nu('U) > 773} gv(Tv2) =mns—1n

......

Tys ={u€ N[U] int(v) > 772} by(Tys) = Ny — Mo—1-

Obviously, the total weight of v-substars in 1) is exactly f(v), and for

each vertex u € V the total weight of v-substars containing vertex u in

77 is n*(v). We put all the set of vl (v € V) together, and denote

T = {%f : v € V}. Since the contribution value n%(v) (v € V)

satisfies the formula (3.2), we have that Z Z 6,(T) =1. O
veV uETE%f

Now we provide an efficient description of the core of the fractional
domination game in terms of coalitions corresponding to v-stars and
v-substars.

THEOREM 3.2. Let G = (V, E;w) be a graph (|V| = n) with vertex
weight function w : V — Ry, and I' = (N,c) be the corresponding
fractional domination game. It holds that z = (x1,%2, ..., z,) € Core(T)
if and only if

(1) z(N) = c(N);

(2) for each j € N and Tj € T;(j-substar set), z(T;) < w;.

Proof. Suppose that z € Core(I'). By the definition of the core, we
have (N) = ¢(N). For each j € N, and each subset j-substar T} € 7},
we define the function f : T; — [0,1] such that f; = 1 and f; = 0 for
each i # j. Then f is a dominating function of the induced graph G[Tj],
it implies that z(Tj) < ¢(Tj) < wj.

Now we prove its sufficiency. Let § C N be an arbitrary coalition,
and f* : S — [0,1] be a minimum weight dominating function in the
induced graph G[S], that is, ) ;g fiw; = c(S).
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Followed from Lemma 3.1, for each vertex j € S, there exist a set
’Z}f of j-substars and a weight function ¢; : 7;-f — R4 such that
dor er!” ¢;(T) = f}, and the total weight of j-substars containing vertex

ieSin7Tl = {7}1“ : j € S} is exactly 1. Therefore
2(8) =) D 4D <Y Y 4T =) fwj=c(8).
jE€S TE'Z}f* jES TE'];f* JjES
That is, z € Core(T'). d

Let G = (V, E;w) be a weighted graph with vertex set V = {1,2,...,
n}. Let A = (a;j)nxn be the closed neighborhood matrix of G, where
ai; = 1 if vertex ¢ is in the neighborhood N{[j], and a;; = 0, otherwise.
We describe the problem of minimum weight fractional dominating func-
tion using the following linear program:

n
v*(G) = min ijwj
j=1

st Az > 1
e z = (z1,T2,...,T,)t >0

(3.3) (LP) :

We remark that in the linear program (LP), we omit the constraint z < 1
since it is redundant under minimizing the objective function. Consider
the dual linear program of (LP):

n
34 DLP) : i=1
(3.4) (DLP) y { L <w
y= (ylay27"'ayn) >0
where w = (w1,ws,...,wy). In the following, we show that the core

of the fractional domination game corresponding to the graph G is the
same as the set of the optimal solutions of (DLP).

THEOREM 3.3. Let G = (V, E;w) be a graph with |V| = n and vertex
weight function w : V — R, , I' = (N, ¢) be the corresponding fractional
domination game. Then the core of T is always non-empty, and a vector
x = (x1,Z2,...,&y) is in the core if and only if x is an optimal solution
to (DLP). Therefore, I' = (N, ¢) are blanced.

Proof. Suppose z € Core(I'). Followed from Theorem 3.2 and the
duality theorem of linear programming, we have that z(N) = ¢(N) =
opt(LP) = opt(DLP) and z(N[j]) < w; for each j € N, i.e., x satisfies
the constrains in (DLP). (Here we use the notation opt(Q) representing



272 Hye Kyung Kim and Qizhi Fang

the optimum objective value of the program problem @.) Thus, z is an
optimal solution to (DLP).

On the other hand, let z be an optimal solution of (DLP). We want
to prove x € Core(T"). By Theorem 3.2, we just need to prove for each
J € N and Tj € T}, 2(T}) < wj.

First, since z is the optimal solution of (DLP), we have

z(N) = opt(DLP) = opt(LP) = ¢(N),
the second equality holds because of the duality theorem of linear pro-
gramming. Second, since z is a feasible solution of (DLP), it satisfies
that
z(N[j]) L w;, and x >0.
Hence, for each j-substar T}, we have T; C N[j] and
z(T;) < 2(N[j]) < wj.
Followed by Theorem 3.2, z € Core(T"). O

COROLLARY 3.4. Let G = (V, E;w) be a graph and T" = (V, ¢) be the
corresponding fractional domination game. Then finding a core element
of this game I' can be carried out in polynomial time.

4. Concave of fractional domination game

In this section, we consider concavity of the fractional domination
game. For general cost functions on the vertices, the fractional domina-
tion game will not satisfy concavity. However, there exists an interest-
ing characterization of concavity of the fractional domination game. We
know that the fractional domination game is not always concave by the
following examples.

EXAMPLE 4.1. (1) Let F; = (V, E;w) be the graph depicted in figure
1 and w = (1,1,1,1). Let I' = (N,c) be the corresponding fractional
domination game. Let S = {v1,v9,v3} and T' = {vg,v3,v4}. Then it is
easy to show that ¢(S) = 1,¢(T) = 1,e(SUT) =2 and ¢(SNT) = 1.
Therefore it is not concave.

v Vg v3 V4

Figure 1. Graph Fy
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(2) Let F» = (V, F;w) be the graph depicted in figure 2 and w =
(1,1,1,1). Let I' = (N, c) be the corresponding fractional domination
game. Then it is easy to check that f(V) = %, %, %, %) is an optimal
fractional domination function on Fy. Let S = {v1,ve,v3} and T =
{v1,v3,v4}. Then ¢(S) = 1,¢(T) = 1,c(SUT) = 3 and ¢(SNT) = 1.
This game also is not concave.

1 V4

v2 v3

Figure 2. Graph Fy

(3) Let F3 = (V, E;w) be the graph depicted in figure 3 and w =
(1,1,1,1). Let ' = (N, c) be the corresponding fractional domination
game. Let S = {v1,v2,vs} and T = {v1,v3,v4}. Then ¢(S) = 1,¢(T) =
1,¢(SUT) = % and ¢(SNT) = 2. This game also is not concave.

n Vg

U2 U3

Figure 3. Graph F3

From above Example 4.1, we see that if graph G contains the three .
kinds of induced graphs given in Example 4.1, then the corresponding
fractional domination game is not concave. So we call the three graphs
Py, Fy and F3 given in Example 4.1 the forbidden graphs.

To characterize concavity of the fractional domination game, we need
to introduce the concept of 2-block graph. A vertex is called a cutvertex
of graph G if the subgraph induced by V' \ {v} consists of more compo-
nents than G. A graph is called 2-connected if it has at least two vertices
and contains no cutvertex. A subgraph B is called a block of graph G if
it is a maximal 2-connected subgraph. A graph G is a 2-block graph if G
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is connected and has at most two blocks which are all complete graphs.
It is each to check that

LEMMA 4.2. A graph G is a 2-block graph if and only if G is con-
nected and has no induced subgraphs as forbidden graphs Fy, F» and
F3.

With the aid of the previous lemma, we now provide a characteriza-
tion of concave fractional domination game.

THEOREM 4.3. Let G = (V,E;w) be a graph with vertex weight
function w; = 1 for all i € V, and T = (N,c) be the corresponding
fractional domination game. ThenT' = (N, c) is concave if and only if G
is a 2-block graph, that is, G has no induced subgraph as the forbidden
graphs Fy, Fy and F3.

Proof. Let I' = (N,c) is concave, and suppose G is not a 2-block
graph. First, if G has more than two block, then there must be induced
a path with length more than 2. From Example 4.1 (1), we see that
I' = (N,c¢) is not concave. This is a contradiction. Second, if one of
G’s block is not a complete graph, then G must have induced graph like
Example 4.1 (1), (2) or (3). Therefore, we see that I' is not concave.
This is also a contradiction. It follows that G must be a 2-block graph.

Conversely, let G = (V, E;w) be a 2-block graph, i, € V with ¢ # j
and S C V'\ {3,5}. We have to show

c(SU{i}) +c(SU{j}) = c(SU{i,5}) +c(S).

Case 1. G[S] has only one component.
If SU{i} or SU{j} has two components, then SU{:}U{j} has at most
two components. Hence,

c(SU{i})+c(SU{F}) >22+1>c(SU{i}U{5}) +c(S).
If SU{i} and SU{j} both have only one component, then SU {3} U{j}
also has only one component. Hence,

c(SU{i})+c(SU{j}) =1+1=c(SU{s}U{s}) +c(5).

Case 2. G[S] has two components.
Each of {7} and {j} must connect to at least one of the components. So,
SU{i} and SU{j} has at most two components. If SU{i} U{j} has two
components, then each of SU {3} and SU {j} has also two components.
Therefore,

c(SU{iP)+c(SU{j})=2+2=c(SU{i} U{j}) +c(S).
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If SU{:} U{j} has only one component, then there must be one cut-
vertex of graph G between {¢} and {5}. So,

c(SU{i}) +c(SU{s}) =1+2=c(SU{i} U{j})+c(S).
Therefore, I' = (N, ¢) is concave. O
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