GREEN'S EQUIVALENCES OF BIRGET-RHODES EXPANSIONS OF FINITE GROUPS

KEUNBAE CHOI, JAEUN LEE, AND YONGDO LIM

ABSTRACT. In this paper we establish a counting method for the Green classes of the Birget-rhodes expansion of finite groups. As an application of the results, we derive explicit enumeration formulas for the Green classes for finite groups of order pq and a finite cyclic group of order p^m , where p and q are arbitrary given distinct prime numbers.

1. Introduction

An expansion defined by Birget and Rhodes [2] can be though of a systematic way of writing semigroups S as homomorphic images of other semigroups \overline{S} ; some important properties of S are preserved in \overline{S} . Among various almost finite expansions of semigroups investigated by Birget and Rhodes, we are mainly interested in the following particular expansion of a semigroup S, which is called the *Birget-Rhodes expansion* of S: For any finite sequence (s_1, s_2, \ldots, s_n) of elements s_1, s_2, \ldots, s_n in S, put

$$P(s_1, s_2, \dots, s_n) := \{1, s_1, s_1 s_2, \dots, s_1 s_2 \cdots s_n\},$$

where 1 is the identity of S^1 . Define

$$\tilde{S}^{\mathcal{R}} := \{ (P(s_1, s_2, \dots, s_n), s_1 s_2 \cdots s_n) : s_1, s_2, \dots, s_n \in S, n \ge 1 \}$$

with the multiplication

$$(P(s_1, s_2, \dots, s_n), s_1 s_2 \cdots s_n)(P(t_1, t_2, \dots, t_m), t_1 t_2 \cdots t_m)$$

$$= (P(s_1, s_2, \dots, s_n) \cup (s_1 s_2 \cdots s_n)$$

$$\cdot P(t_1, t_2, \dots, t_m), s_1 s_2 \cdots s_n t_1 t_2 \cdots t_m)$$

Received March 09, 2005.

2000 Mathematics Subject Classification: 20M18.

Key words and phrases: Birget-Rhodes expansion, Green's equivalence.

This research was supported by Yeungnam University research grants in 2002.

where $s \cdot U = \{ su : u \in U \}$ for $s \in S$ and $U \subset S$. Then $\tilde{S}^{\mathcal{R}}$ is a semigroup. And it turns out [9] that when S = G is a group,

$$\tilde{G}^{\mathscr{R}} = \{ (A, g) \in P_1(G) \times G : g \in G \},$$

where $P_1(G)$ denotes the set of all finite subsets of G containing the identity 1_G of G.

In [9] Szendrei showed that the Birget-Rhodes expansion $(\tilde{\cdot})^{\mathscr{R}}$ as a natural functor from the category of groups into the category of F-inverse semigroups is the left adjoint of the functor assigning the greatest group homomorphic image to every F-inverse semigroup. In [3] the authors derived a new approach to the Burnside problem using the residually finiteness of the Birget-Rhodes expansion $(\tilde{\cdot})^{\mathscr{R}}$.

In [5] Exel constructed, in a canonical way, an inverse monoid $\mathcal{S}(G)$ associated with a group G defined via generators and relations. He established the one-to-one correspondence between actions of $\mathcal{S}(G)$ on a set X (an action of an inverse semigroup S on the set X is a unital homomorphism from S to the symmetric inverse monoid I(X)) and partial actions of G on X, with its applications on graded C^* -algebras. In [7] Kellendonk and Lawson observed that the inverse monoid $\mathcal{S}(G)$ constructed by Exel is exactly the same as the Birget-Rhodes expansion $\tilde{G}^{\mathcal{R}}$ of the group G. In [4], the authors prove that if a group G acts faithfully on a Hausdorff space X and acts freely at a non-isolated point, then the Birget-Rhodes expansion $\tilde{G}^{\mathcal{R}}$ of the group G is isomorphic to an inverse monoid of Möbius type which mainly aries in conformal geometry.

In this paper, we restrict our attention to the "finite" Birget-Rhodes expansion $(\tilde{\,\cdot\,})^{\mathscr{R}}$ functor from the category of finite groups into the category of finite F-inverse semigroups in which natural counting problems depending on the group structures arise. Beside its importance in studying finite semigroups, the problem counting Green $\mathscr{L}, \mathscr{R} \mathscr{D}$, and \mathscr{H} -classes of $\tilde{G}^{\mathscr{R}}$ of a finite group G looks very natural in the theory of finite inverse semigroups (cf. [1]). Although it is shown by a direct approach (Theorem 2.5) that both the Green \mathscr{L} and \mathscr{R} -classes of the Birget-Rhodes expansion $\tilde{G}^{\mathscr{R}}$ consist of $2^{|G|-1}$ classes that looks independent on the group structures of G, but the number of the Green \mathscr{D} or \mathscr{H} -classes are heavily depend on the group structures of G.

Our main objective of this paper is to count the Green classes of the Birget-Rhodes expansion of a finite group.

As an application of the results, when G is a finite group of order pq or a finite cyclic group of order p^m , we obtain an explicit formula on the

number of the Green classes for G, where p and q are distinct primes is given in section 3.

2. Green's relations on $\tilde{G}^{\mathscr{R}}$

In the following, we always assume that G is a finite group of order n. For a subset A of G, we denote |A| by the number of elements of A. By $A \leq G$ we shall mean that A is a subgroup of G.

Green's relations on an inverse monoid S are defined as follow: for $s,t\in S$,

$$s \mathcal{R} t \iff s s^{-1} = t t^{-1}; s \mathcal{L} t \iff s^{-1} s = t^{-1} t;$$

 $s \mathcal{J} t \iff S s S = S t S; \mathcal{H} = \mathcal{R} \cap \mathcal{L}.$

The relations \mathscr{R} and \mathscr{L} commute under composition. The Green \mathscr{D} relation is then defined by

$$\mathcal{D} = \mathcal{R} \circ \mathcal{L} = \mathcal{L} \circ \mathcal{R}$$

These relations are equivalence relations on S, and they play an important role in the investigation of the structure of semigroups ([6, 8]). Observe that

$$\mathcal{H} = \mathcal{R} \cap \mathcal{L} \subset \mathcal{R} \cup \mathcal{L} \subset \mathcal{D} \subset \mathcal{J}.$$

For $a \in S$, $\mathcal{L}_a, \mathcal{R}_a$, $\mathcal{J}_a, \mathcal{H}_a$, and \mathcal{D}_a denote the $\mathcal{L}, \mathcal{R}, \mathcal{J}, \mathcal{H}$, and \mathcal{D}_a -classes of a in S, respectively.

The set $\tilde{G}^{\mathscr{R}}$ defined by

$$\tilde{G}^{\mathscr{R}} = \{ (A, g) \in \mathcal{P}_1(G) \times G : g \in A \}$$

is an inverse monoid, called the Birget-Rhodes expansion ([2, 3, 9]) of the group G, under the multiplication $(A, g)(B, h) = (A \cup g \cdot B, gh)$, where $g \cdot B = \{gb : b \in B\}$. It is known [9] that the Birget-Rhodes expansion $\tilde{G}^{\mathcal{R}}$ of G is an F-inverse monoid whose maximum group image is isomorphic to the given group G.

For a subset A of G, the stablizer of A is defined by

$$Stab(A) := \{ g \in G : gA = A \}.$$

Then $\operatorname{Stab}(A)$ is a subgroup of G

LEMMA 2.1. Let $(A,g),(B,h)\in \tilde{G}^{\mathscr{R}}$. Then we have

(1) $(A,g) \mathcal{R}(B,h)$ if and only if A=B, and hence

$$\mathscr{R}_{(A,g)}=\{(A,a)\,:\,a\in A\}.$$

- (2) $(A,g) \mathcal{L}(B,h)$ if and only if $g^{-1}A = h^{-1}B$, and hence $\mathcal{L}_{(A,g)} = \{(a^{-1}A, a^{-1}g) : a \in A\}.$
- (3) $(A,g) \mathcal{D}(B,h)$ if and only if A = kB for some $k \in G$, and hence $\mathcal{D}_{(A,g)} = \{(k^{-1}A,h) : k \in A \text{ and } h \in k^{-1}A\}.$
- $(4) \mathcal{D} = \mathcal{J}.$
- (5) (A,g) $\mathcal{H}(B,h)$ if and only if $A=B=hg^{-1}A$, and hence $\mathcal{H}_{(A,g)}=\{(A,sg):s\in\mathrm{Stab}(A)\}.$

In particular, the maximal subgroup H(A,1) is isomorphic to $\operatorname{Stab}(A)$.

Proof. (1) is straightforward.

(2) The first statement is clear and the second comes from

$$\mathscr{L}_{(A,g)} = \{(B,h) \in \tilde{G}^{\mathscr{R}} : B = hg^{-1}A\} = \{(hg^{-1}A,h) : h \in A^{-1}g\}.$$

(3) Suppose that $(A,g) \mathcal{D}(B,h)$. Then there exists an element (C,f) in $\tilde{G}^{\mathcal{R}}$ such that $(A,g) \mathcal{L}(C,f)$ and $(C,f) \mathcal{R}(B,h)$. By (1) and (2), we have $g^{-1}A = f^{-1}C$ and C = B and hence $A = gf^{-1}B$. Conversely, suppose that A = kB for some $k \in G$. Then $(B,k^{-1}g) \in \tilde{G}^{\mathcal{R}}$, $(A,g) \mathcal{L}(B,k^{-1}g)$, and also $(B,k^{-1}g) \mathcal{R}(B,h)$. This implies that $(A,g) \mathcal{D}(B,h)$. Moreover,

$$\mathscr{D}_{(A,g)} = \{(k^{-1}A,h) \in \tilde{G}^{\mathscr{R}} : k \in G\} = \{(k^{-1}A,h) : k \in A \text{ and } h \in k^{-1}A\}.$$

- (4) Let $(A, g) \mathcal{D}(B, h)$ and $(A, g) \leq (B, h)$. Then by (3), we have A = kB for some $k \in G$, $B \subset A$, and g = h. This implies that (A, g) = (B, h). By Corollary 19 of 3.2 in [8], we have $\mathcal{D} = \mathcal{J}$.
- (5) The first statement comes (1) and (2), and the second comes from the fact that H(A,1) is equal to the Green \mathscr{H} -class of (A,1) in $\tilde{G}^{\mathscr{R}}$. Moreover,

$$\mathcal{H}_{(A,g)} = \{ (A,h) \in \tilde{G}^{\mathcal{R}} : hg^{-1}A = A \} = \{ (A,h) \in \tilde{G}^{\mathcal{R}} : h \in \operatorname{Stab}(A)g \}$$
$$= \{ (A,sg) : s \in \operatorname{Stab}(A) \}.$$

This completes the proof.

Notice that Stab(A) acts freely on the set A by left multiplication

$$\operatorname{Stab}(A) \times A \to A, \quad g \cdot a = ga.$$

By the Burnside Lemma, the number of orbits is

(2.1)
$$\left| A/\operatorname{Stab}(A) \right| = \frac{|A|}{|\operatorname{Stab}(A)|}.$$

COROLLARY 2.2. Let $(A, q) \in \tilde{G}^{\mathcal{R}}$. Then

- (1) $|\mathcal{L}_{(A,g)}| = |\mathcal{R}_{(A,g)}| = |A|$,
- (2) $|\mathcal{D}_{(A,g)}| = |\mathcal{J}_{(A,g)}| = \frac{|A|^2}{|\operatorname{Stab}(A)|} \le |A|^2,$ (3) $|\mathcal{H}_{A,g}| = |\operatorname{Stab}(A)|$
- (3) $|\mathcal{H}_{(A,g)}| = |\operatorname{Stab}(A)|$.

Proof. (1) It comes from Lemma 2.1 (1) and (2).

(2) We observe that for $k, k' \in A$, $k^{-1}A = (k')^{-1}A$ if and only if $k'k^{-1} \in \operatorname{Stab}(A)$ if and only if $k' \in \operatorname{Stab}(A)k$. Now, by Lemma 2.1 (3) and (2.1), we have

$$|\mathscr{D}_{(A,g)}| = \left|A/\operatorname{Stab}(A)\right| \cdot |A| = \frac{|A|}{|\operatorname{Stab}(A)|} \cdot |A| \le |A|^2.$$

(3) By Lemma 2.1(5), we have
$$|\mathcal{H}_{(A,g)}| = |\operatorname{Stab}(A)g| = |\operatorname{Stab}(A)|$$
. \square

COROLLARY 2.3. Let $(A,g) \in \tilde{G}^{\mathcal{R}}$. Then A is a subgroup of G if and only if $|\mathcal{D}_{(A,g)}| = |A|$. In this case, we have that $\mathcal{D}_{(A,g)} = \{(A,g) : g \in A\}$.

Proof. Suppose that A is a subgroup of G. Then Stab(A) = A. This implies that $|A/\operatorname{Stab}(A)| = 1$, and hence by Corollary 2.2 (2), $|\mathcal{D}_{(A,a)}| =$ $|A/\operatorname{Stab}(A)| \cdot |A| = |A|$.

Conversely, suppose that $|\mathcal{D}_{(A,g)}| = |A|$. Let $x, y \in A$. Since $|A/\operatorname{Stab}|$ (A) = 1, there exists $g \in \operatorname{Stab}(A)$ such that gx = y. This implies that $xy^{-1} = g^{-1} \in \operatorname{Stab}(A)$ and thus $xy^{-1}A = A$. Because $1_G \in A$, $xy^{-1} \in A$ and hence A is a subgroup of G.

Remark 2.4. Each \mathcal{D} -class in a semigroup is a union of \mathcal{L} -classes and also a union of \mathcal{R} -classes. If the intersection of an \mathcal{L} -class and an \mathcal{R} -class is none empty set, then it is an \mathcal{H} -class. We may visualize a D-class in a finite semigroup as "eggbox" diagram in Figure 1.

Figure 1. Eggbox

In this diagram each row represents an \mathcal{R} -class, each column represents an \mathcal{L} -class, and each cell an \mathcal{H} -class. In the case of our semigroup $\tilde{G}^{\mathcal{R}}$,

each \mathscr{D} -class $\mathscr{D}_{(A,g)}$ forms the square eggbox, $n=m=\frac{|A|}{|\mathrm{Stab}(A)|}$ from Corollary 2.2.

THEOREM 2.5. We have

$$(1) |\tilde{G}^{\mathcal{R}}/\mathcal{L}| = |\tilde{G}^{\mathcal{R}}/\mathcal{R}| = 2^{|G|-1}.$$

(2)
$$|\tilde{G}^{\mathscr{R}}/\mathscr{H}| = \sum_{A \in P_1(G)} \frac{|A|}{|\operatorname{Stab}(A)|}.$$

Proof. (1) It is immediate to see that for each k = 1, 2, ..., n = |G|,

$$|\{(A,g)\in \tilde{G}^{\mathscr{R}}: |A|=k\}|=\binom{n-1}{k-1}\cdot k.$$

By Corollary 2.2 (1), we have

$$|\{(A,g)\in \tilde{G}^{\mathscr{R}}: |A|=k\}/\mathscr{L}|=\frac{1}{k}\left[\binom{n-1}{k-1}\cdot k\right]=\binom{n-1}{k-1}$$

and hence

$$|\tilde{G}^{\mathscr{R}}/\mathscr{L}| = \sum_{k=1}^{n} \binom{n-1}{k-1} = 2^{n-1}.$$

(2) This results follows from Lemma 2.1 (5) and Corollary 2.2 (3). \Box

LEMMA 2.6. Let $(A,g),(B,h) \in \tilde{G}^{\mathscr{R}}$ with $(A,g) \mathscr{D}(B,h)$. Then

- (1) |A| = |B|,
- $(2) |\operatorname{Stab}(A)| = |\operatorname{Stab}(B)|.$

In particular, if G is abelian, then Stab(A) = Stab(B).

Proof. (1) By Lemma 2.1, A = kB for some $k \in G$, and hence |A| = |B|.

(2) By Corollary 2.2,

$$|A|^2/|\mathrm{Stab}(A)| = |\mathcal{D}_{(A,g)}| = |\mathcal{D}_{(B,h)}| = |B|^2/|\mathrm{Stab}(B)|.$$

Thus $|\operatorname{Stab}(A)| = |\operatorname{Stab}(B)|$ from (1). Assume that G is abelian. Since $(A,g) \mathcal{D}(B,h)$, by Lemma 2.1, A=kB for some $k \in G$. Let $a \in \operatorname{Stab}(A)$. Then aA=A, and hence $B=k^{-1}A=k^{-1}aA=ak^{-1}A=aB$. Thus $a \in \operatorname{Stab}(B)$. Conversely, if $b \in \operatorname{Stab}(B)$, then bA=bkB=kbB=kB=A, and hence $b \in \operatorname{Stab}(A)$.

For $1 \leq k, m \leq |G|$ and a subgroup S of G, we set

$$\mathcal{A}_k = \{(A,g) \in \tilde{G}^{\mathcal{R}}: |A| = k\}, d_k(S) = \Big|\{(A,g) \in \mathcal{A}_k: \operatorname{Stab}(A) = S\}\Big|,$$

and

$$d_k(m) = \sum_{S \le G, |S| = m} d_k(S).$$

THEOREM 2.7. We have

$$\left| \tilde{G}^{\mathscr{R}}/\mathscr{D} \right| = \sum_{k=1}^{|G|} |\mathcal{A}_k/\mathscr{D}|$$

and for each k,

$$|\mathcal{A}_k/\mathcal{D}| = \sum_{m=1}^k \frac{m}{k^2} \cdot d_k(m) = \frac{1}{k^2} \sum_{S \leq G} |S| \cdot d_k(S).$$

Proof. It follows by Lemma 2.6 (1) that $\left|\tilde{G}^{\mathscr{R}}/\mathscr{D}\right| = \sum_{k=1}^{|G|} |\mathcal{A}_k/\mathscr{D}|$. Note that \mathcal{A}_k is the disjoint union of the sets $\{(A,g)\in\mathcal{A}_k: |\mathrm{Stab}(A)|=m\}$,

$$\mathcal{A}_k = \bigcup_{m=1}^k \{ (A, g) \in \mathcal{A}_k : |\mathrm{Stab}(A)| = m \}.$$

By Lemma 2.6 (2), we have $|\mathcal{A}_k/\mathcal{D}| = \sum_{m=1}^k |\{(A,g) \in \mathcal{A}_k : |\text{Stab}(A)| = m\}/\mathcal{D}|$. Since

$$\{(A,g)\in\mathcal{A}_k:|\mathrm{Stab}(A)|=m\}=\bigcup_{S< G,|S|=m}\{(A,g)\in\mathcal{A}_k:\mathrm{Stab}(A)=S\},$$

it follows from Corollary 2.2 that

$$\left| \{ (A, g) \in \mathcal{A}_k : |\operatorname{Stab}(A)| = m \} / \mathscr{D} \right|$$

$$= \sum_{S < G, |S| = m} \frac{|S|}{k^2} \cdot \left| \{ (A, g) \in \mathcal{A}_k : \operatorname{Stab}(A) = S \} \right|.$$

Therefore,

$$|\mathcal{A}_k/\mathcal{D}| = \sum_{m=1}^k \sum_{S < G, |S| = m} \frac{|S|}{k^2} \cdot d_k(S) = \sum_{m=1}^k \frac{m}{k^2} \cdot d_k(m).$$

Now, if |S| > k then $\{(A, g) \in \mathcal{A}_k : \operatorname{Stab}(A) = S\} = \emptyset$ and hence

$$\sum_{m=1}^{k} \sum_{S \leq G, |S|=m} \frac{|S|}{k^2} \cdot d_k(S) = \frac{1}{k^2} \sum_{S \leq G} |S| \cdot d_k(S).$$

This completes the proof.

COROLLARY 2.8. We have

$$\left| \tilde{G}^{\mathscr{R}} / \mathscr{H} \right| = \sum_{k=1}^{|G|} \sum_{S < G} \frac{d_k(S)}{|S|}.$$

Proof. By Corollary 2.2 (2), $|\mathcal{D}_{(A,g)}| = |A|^2/|\operatorname{Stab}(A)|$. For each $(B,h) \in \mathcal{D}_{(A,g)}$, by Corollary 2.2 (3) and Lemma 2.6, |A| = |B| and $|\mathcal{H}_{(B,h)}| = |\operatorname{Stab}(B)| = |\operatorname{Stab}(A)|$. This implies that the number of \mathcal{H} -classes in $\mathcal{D}_{(A,g)}$ is $|A|^2/|\operatorname{Stab}(A)|^2$ (See Figure 1). By Theorem 2.7, we have

$$\left| \tilde{G}^{\mathscr{R}} / \mathscr{H} \right| = \sum_{k=1}^{|G|} \left[\sum_{S \le G} \frac{1}{k^2} |S| d_k(S) \cdot \frac{k^2}{|S|^2} \right] = \sum_{k=1}^{|G|} \sum_{S \le G} \frac{d_k(S)}{|S|}.$$

From Theorem 2.7 and Corollary 2.8, we can see that the counting problem on the number of Green \mathscr{H} and \mathscr{D} -classes of the Birget-Rhodes expansion of a finite group G is eventually that problem on $d_k(S)$ for each k $(1 \le k \le |G|)$ and for each subgroup S. Let S be a fixed subgroup of G and let

$$\widetilde{d}_k(S) = |\{(A, g) \in \mathcal{A}_k : S \leq \operatorname{Stab}(A)\}|.$$

It is clear that

(2.2)
$$\widetilde{d}_k(S) = \sum_{S \le K} d_k(K).$$

To calculate $d_k(S)$ in terms of $\widetilde{d}_k(K)$, one can invert the equation (2.2) by introducing the Möbius function for G. This assigns an integer $\mu(K)$ to each super-subgroup K of S by recursive formula

$$\sum_{S < H} \mu(H) = \left\{ \begin{array}{ll} 1 & \text{if } S = H \\ 0 & \text{if } S < H. \end{array} \right.$$

Then we have

(2.3)
$$d_k(S) = \sum_{S \le K} \mu(K) \, \widetilde{d}_k(K).$$

LEMMA 2.9. Let $A \subseteq G$. Then A is a union of right cosets of the subgroup $\operatorname{Stab}(A)$ in G.

Proof. Straightforward.

LEMMA 2.10. Let K be a subgroup of G and let $1 \le k \le |G|$. Then

$$\widetilde{d}_k(K) = \left\{ egin{array}{l} \left(rac{|G|}{|K|} - 1
ight) \cdot k & ext{if } |K| ext{ is a divisor of } k, \\ rac{k}{|K|} - 1
ight) \cdot k & ext{otherwise} \end{array}
ight.$$

where $\binom{0}{0}$ is defined to be 1.

Proof. Let $l = \frac{k}{|K|}$. By definition, $\widetilde{d}_k(K)$ is non-empty implies that |K| divides k. Thus it suffices to show that

$$\{(A,g) \in \mathcal{A}_k : K \le \operatorname{Stab}(A)\}$$

= $\{(B,h) \in \mathcal{A}_k : B = K \cup Kg_1 \cup \dots \cup Kg_{l-1}, \ g_i \in G\}.$

Let $(A,g) \in \mathcal{A}_k$ such that $K \leq \operatorname{Stab}(A)$. Then $\operatorname{Stab}(A)$ is a union of right cosets of the group K in $\operatorname{Stab}(A)$. By Lemma 2.9, the set A is a union of right cosets of the group $\operatorname{Stab}(A)$ in G. Conversely, if $B = K \cup Kg_1 \cup \cdots \cup Kg_{l-1}$ with |B| = k, then obviously the group K is contained in $\operatorname{Stab}(B)$. This completes the proof.

LEMMA 2.11. Let $1 \le k, m \le |G|$. Then

- (1) If $m \nmid k$, then $d_k(m) = 0$.
- (2) If gcd(|G|, k) = 1, then

$$d_k(m) = \begin{cases} \binom{|G|-1}{k-1} \cdot k, & \text{if } m = 1, \\ 0, & \text{otherwise,} \end{cases}$$

and hence

$$|\mathcal{A}_k/\mathscr{D}| = rac{1}{|G|}inom{|G|}{k} ext{ and } |\mathcal{A}_k/\mathscr{H}| = |\mathcal{A}_k|.$$

(3)
$$d_k(|G|) = \begin{cases} |G|, & \text{if } k = |G| \\ 0, & \text{otherwise.} \end{cases}$$

$$(4) |\mathcal{A}_k/\mathcal{D}| = |\mathcal{A}_{n-k}/\mathcal{D}|$$

Proof. (1) Suppose that $d_k(m) \neq 0$. Then by definition there exists a subgroup S of order m and a subset A with |A| = k such that Stab(A) = S. By (2.1), m|k.

(2) Suppose that $d_k(m) \neq 0$. Then m divides |G| since it is an order of a subgroup. Since gcd(|G|, k) = 1, m must be equal to 1. Thus

$$d_k(1) = \sum_{S \le G, |S| = 1} d_k(S) = d_k(\{1_G\}) = {|G| - 1 \choose k - 1} \cdot k.$$

It then follows by Theorem 2.7 and Corollary 2.8 that

$$|\mathcal{A}_k/\mathcal{D}| = \frac{1}{k^2} \sum_{m=1}^k m \cdot d_k(m) = \frac{1}{k} \binom{|G|-1}{k-1} = \frac{1}{|G|} \binom{|G|}{k}$$
$$|\mathcal{A}_k/\mathcal{H}| = \binom{|G|-1}{k-1} \cdot k = |\mathcal{A}_k|.$$

- (3) It follows from the fact that $d_k(|G|) = d_k(G) = \widetilde{d}_k(G)$ and from Lemma 2.10.
 - (4) By Theorem 2.7 and Lemma 2.10,

$$|\mathcal{A}_k/\mathcal{D}| = \sum_{S \le G} |S| \left[\sum_{S \le K} \mu(K) \cdot \frac{1}{k} \binom{\frac{n}{|K|} - 1}{\frac{k}{|K|} - 1} \right] (|K| | k).$$

Since

$$\frac{1}{k} \binom{\frac{n}{|K|} - 1}{\frac{k}{|K|} - 1} = \frac{1}{n - k} \binom{\frac{n}{|K|} - 1}{\frac{n - k}{|K|} - 1},$$

we have

$$|\mathcal{A}_k/\mathcal{D}| = \sum_{S \leq G} |S| \left[\sum_{S \leq K} \mu(K) \cdot \frac{1}{n-k} \binom{\frac{n}{|K|} - 1}{\frac{n-k}{|K|} - 1} \right] = |\mathcal{A}_{n-k}/\mathcal{D}|.$$

This completes the proof.

Remark 2.12. If G is a trivial group, then $|\tilde{G}^{\mathcal{R}}/\mathcal{D}|=1$. By Lemma 2.11 (4), we have that if |G|=2, then $|\tilde{G}^{\mathcal{R}}/\mathcal{D}|=2$ and if $|G|\geq 3$, then

$$\begin{split} |\tilde{G}^{\mathscr{R}}/\mathscr{D}| &= \sum_{k=1}^{|G|} |\mathcal{A}_k/\mathscr{D}| \\ &= \begin{cases} 3 + \left|\mathcal{A}_{|\underline{G}|}/\mathscr{D}\right| + 2\sum_{k=2}^{\left\lfloor \frac{|G|-1}{2}\right\rfloor} |\mathcal{A}_k/\mathscr{D}|, & \text{if } |G| \text{ is even,} \\ \\ \frac{|G|-1}{3 + 2\sum_{k=2}^{2} |\mathcal{A}_k/\mathscr{D}|, & \text{if } |G| \text{ is odd.} \end{cases} \end{split}$$

EXAMPLE 2.13. Let $G = \mathbb{Z}_6 \oplus \mathbb{Z}_2$. Then G has the following lattice diagram of subgroups:

where

$$A_{1} = \langle (1,0) \rangle, \ A_{2} = \langle (1,1) \rangle,$$

$$A_{3} = \{(0,0), (2,0), (2,1), (4,0), (4,1), (0,1)\},$$

$$B = \{(0,0), (0,1), (3,0), (3,1)\}, \ C = \langle (2,0) \rangle,$$

$$D_{1} = \langle (3,0) \rangle, \ D_{2} = \langle (3,1), \ D_{3} = \langle (0,1) \rangle.$$

Applying Lemma 2.11, we have that

$$|\mathcal{A}_{12}/\mathcal{D}| = 1, |\mathcal{A}_{12}/\mathcal{H}| = 1, |\mathcal{A}_{11}/\mathcal{D}| = 1, |\mathcal{A}_{11}/\mathcal{H}| = 121,$$

 $|\mathcal{A}_{7}/\mathcal{D}| = 66, |\mathcal{A}_{7}/\mathcal{H}| = 3234, |\mathcal{A}_{5}/\mathcal{H}| = 1650, |\mathcal{A}_{1}/\mathcal{H}| = 1.$

Next, we will compute the case $|\mathcal{A}_6/\mathcal{D}|$. The remaining cases are similar. Let $(A,g) \in \mathcal{A}_6$. Then $|\operatorname{Stab}(A)| = 6$ or 3 or 2 or 1. Using (2.3) and Lemma 2.10,

$$d_{6}(A_{i}) = \sum_{A_{i} \leq K} \mu(K)\widetilde{d}_{6}(K) = \begin{pmatrix} 1\\0 \end{pmatrix} \cdot 6 = 6 \text{ for each } i = 1, 2, 3,$$

$$d_{6}(C) = \sum_{C \leq K} \mu(K)\widetilde{d}_{6}(K) = 1 \cdot \begin{pmatrix} 3\\1 \end{pmatrix} \cdot 6 - 3 \cdot 6 = 0,$$

$$d_{6}(D_{i}) = \sum_{D_{i} \leq K} \mu(K)\widetilde{d}_{6}(K)$$

$$= 1 \cdot \begin{pmatrix} 5\\2 \end{pmatrix} \cdot 6 - 1 \cdot 6 = 54 \text{ for each } i = 1, 2, 3,$$

$$d_{6}(\{1_{G}\}) = \sum_{1_{G} \leq K} \mu(K)\widetilde{d}_{6}(K) = 1 \cdot \begin{pmatrix} 11\\5 \end{pmatrix} \cdot 6 - 1 \cdot \begin{pmatrix} 3\\1 \end{pmatrix} \cdot 6$$

$$+ 3 \cdot (-1) \cdot \begin{pmatrix} 5\\2 \end{pmatrix} \cdot 6 + 3 \cdot 1 \cdot 6 = 2592,$$

Now, we evaluate $|\mathcal{A}_6/\mathcal{D}|$ and $|\mathcal{A}_6/\mathcal{H}|$ as follows.

$$|\mathcal{A}_6/\mathcal{D}| = \frac{1}{6^2} \sum_{S \le G} |S| \cdot d_6(S)$$

$$= \frac{|\{1_G\}|}{6^2} \cdot d_6(\{1_G\}) + \sum_{i=1}^3 \frac{|A_i|}{6^2} \cdot d_6(A_i) + \sum_{i=1}^3 \frac{|D_i|}{6^2} \cdot d_6(D_i)$$

$$= 72 + 3 + 9 = 84$$

$$|\mathcal{A}_6/\mathcal{H}| = \sum_{S \le G} \frac{d_6(S)}{|S|} = \frac{d_6(\{1_G\})}{1} + \sum_{i=1}^3 \frac{d_6(A_i)}{6} + \sum_{i=1}^3 \frac{d_6(D_i)}{2}$$

$$= 2592 + 3 + 81 = 2676.$$

We have the following table on $|A_k/\mathcal{D}|$ and $|A_k/\mathcal{H}|$:

k	1	2	3	4	5	6	7	8	9	10	11	12
$ \mathcal{A}_k/\mathscr{D} $	1	7	19	45	66	84	66	45	19	7	1	1
$ \mathcal{A}_k/\mathscr{H} $	1	19	163	633	1650	2676	3234	2532	1467	475	121	1

Table 1. $|\mathcal{A}_k/\mathcal{D}|$ and $|\mathcal{A}_k/\mathcal{H}|$

We conclude from Theorem 2.7, Corollary 2.8, and Table 1 that $|\tilde{G}^{\mathcal{R}}/\mathcal{D}| = 361$ and $|\tilde{G}^{\mathcal{R}}/\mathcal{H}| = 12972$.

3. Enumeration formulas

In this section we will find an explicit formula on the number of the Green \mathcal{H} or \mathcal{D} -classes for finite groups of order pq or for finite cyclic groups of order p^m where p and q are distinct prime numbers.

Let $k_p(G)$ denote the number of subgroups of G having order p.

THEOREM 3.1. If G is a group of order pq $(p \neq q, p, q : prime)$, then we have

(1)
$$|\tilde{G}^{\mathcal{R}}/\mathcal{D}| = 1 + \frac{1}{pq} \Big[2^{pq} - 2 + k_p(G)(p-1)(2^q - 2) + k_q(G)(q-1)(2^p - 2) \Big].$$

(2)
$$|\tilde{G}^{\mathcal{R}}/\mathcal{H}| = 1 + (pq+1)2^{pq-2} - pq + k_p(G)(1-p) \Big[(q+1)2^{q-2} - q \Big] + k_q(G)(1-q) \Big[(p+1)2^{p-2} - p \Big].$$

Proof. Let $1 \le k \le pq = |G|$. We consider the following cases: Case (i) k = pq. By Lemma 2.11,

$$|\mathcal{A}_k/\mathcal{D}|=1$$
 and $|\mathcal{A}_k/\mathcal{H}|=1$.

Case (ii) gcd(pq, k) = 1. By Lemma 2.11, we find that

$$|\mathcal{A}_k/\mathscr{D}| = \frac{1}{pq} \binom{pq}{k}$$
 and $|\mathcal{A}_k/\mathscr{H}| = \binom{pq-1}{k-1} \cdot k = \frac{1}{pq} \cdot k^2 \binom{pq}{k}$.

Case (iii) k = lp, $1 \le l \le q - 1$: In this case,

$$\begin{split} d_k(p) &= \sum_{S \leq G, |S| = p} d_k(S) = k_p(G) \cdot \binom{q-1}{l-1} \cdot lp, \\ d_k(1) &= \sum_{S \leq G, |S| = 1} d_k(S) = \left[\binom{pq-1}{lp-1} - k_p(G) \binom{q-1}{l-1} \right] \cdot lp. \end{split}$$

Therefore

$$\begin{aligned} |\mathcal{A}_k/\mathcal{D}| &= \frac{1}{k^2} \left\{ p \cdot d_k(p)(G) + 1 \cdot d_k(1) \right\} \\ &= \frac{1}{l^2 p^2} \left\{ p \cdot k_p(G) \cdot \left[\begin{pmatrix} q - 1 \\ l - 1 \end{pmatrix} \cdot lp \right] \right. \\ &+ \left[\begin{pmatrix} pq - 1 \\ lp - 1 \end{pmatrix} - k_p(G) \begin{pmatrix} q - 1 \\ l - 1 \end{pmatrix} \right] \cdot lp \right\} \\ &= \frac{k_p(G)}{q} \binom{q}{l} + \frac{1}{pq} \binom{pq}{lp} - \frac{k_p(G)}{pq} \binom{q}{l} \end{aligned}$$

and

$$\begin{aligned} |\mathcal{A}_k/\mathscr{H}| &= d_k(\{1_G\}) + \sum_{S \leq G, |S| = p} \frac{d_k(S)}{|S|} \\ &= \left[\binom{pq-1}{lp-1} \cdot lp - k_p(G) \cdot \binom{q-1}{l-1} \cdot lp \right] + k_p(G) \binom{q-1}{l-1} \cdot l \\ &= \frac{1}{pq} \cdot (lp)^2 \binom{pq}{lp} - \frac{k_p(G) \cdot p}{q} \cdot l^2 \binom{q}{l} + \frac{k_p(G)}{q} \cdot l^2 \binom{q}{l} \\ &= \frac{k_p(G)}{q} \left[(1-p) \cdot l^2 \binom{q}{l} \right] + \frac{1}{pq} \cdot (lp)^2 \binom{pq}{lp}. \end{aligned}$$

Case (iv) k = lq, $1 \le l \le p - 1$: In this case, we have that

$$|\mathcal{A}_k/\mathscr{D}| = \frac{k_q(G)}{p} \binom{p}{l} + \frac{1}{pq} \binom{pq}{lq} - \frac{k_q(G)}{pq} \binom{p}{l}$$

and

$$|\mathcal{A}_k/\mathscr{H}| = \frac{k_q(G)}{p} \left[(1-q) \cdot l^2 \binom{p}{l} \right] + \frac{1}{pq} \cdot (lq)^2 \binom{pq}{lq}.$$

Therefore by Theorem 2.7, we have

$$\begin{split} |\tilde{G}^{\mathscr{B}}/\mathscr{D}| &= \sum_{k=1}^{pq} |\mathcal{A}_k/\mathscr{D}| \\ &= |\mathcal{A}_{pq}/\mathscr{D}| + \sum_{\substack{1 \leq k < pq \\ \gcd(k,pq) = 1}} |\mathcal{A}_k/\mathscr{D}| + \sum_{l=1}^{q-1} |\mathcal{A}_{lp}/\mathscr{D}| + \sum_{l=1}^{p-1} |\mathcal{A}_{lq}/\mathscr{D}| \\ &= 1 + \sum_{l=1}^{q-1} \left[\frac{k_p(G)}{q} \binom{q}{l} - \frac{k_p(G)}{pq} \binom{q}{l} \right] \\ &+ \sum_{l=1}^{p-1} \left[\frac{k_q(G)}{p} \binom{p}{l} - \frac{k_q(G)}{pq} \binom{p}{l} \right] \\ &+ \sum_{\substack{1 \leq k < pq \\ \gcd(k,pq) = 1}} \frac{1}{pq} \binom{pq}{k} + \sum_{l=1}^{q-1} \frac{1}{pq} \binom{pq}{lp} + \sum_{l=1}^{p-1} \frac{1}{pq} \binom{pq}{lq} \end{split}$$

$$= 1 + \frac{k_p(G)}{q} \left(1 - \frac{1}{p} \right) \sum_{l=1}^{q-1} {q \choose l}$$

$$+ \frac{k_q(G)}{p} \left(1 - \frac{1}{q} \right) \sum_{l=1}^{p-1} {p \choose l} + \frac{1}{pq} \sum_{k=1}^{pq-1} {pq \choose k}$$

$$= 1 + \frac{1}{pq} \left[2^{pq} - 2 + k_p(G)(p-1)(2^q - 2) + k_q(G)(q-1)(2^p - 2) \right]$$

and also by Corollary 2.8, we have

$$\begin{split} &|\tilde{G}^{\mathscr{R}}/\mathscr{H}| \\ &= \sum_{k=1}^{pq} |A_k/\mathscr{H}| \\ &= |A_{pq}/\mathscr{H}| + \sum_{\substack{1 \leq k < pq \\ \gcd(k,pq) = 1}} |A_k/\mathscr{H}| \\ &+ \sum_{l=1}^{q-1} |A_{lp}/\mathscr{H}| + \sum_{l=1}^{p-1} |A_{lq}/\mathscr{H}| \\ &= 1 + \frac{1}{pq} \left[\sum_{\substack{1 \leq k < pq \\ \gcd(k,pq) = 1}} k^2 \binom{pq}{k} + \sum_{l=1}^{q-1} (lp)^2 \binom{pq}{lp} + \sum_{l=1}^{p-1} (lq)^2 \binom{pq}{lq} \right] \\ &+ (1-p) \frac{k_p(G)}{q} \sum_{l=1}^{q-1} l^2 \binom{q}{l} + (1-q) \frac{k_q(G)}{p} \sum_{l=1}^{p-1} l^2 \binom{p}{l} \\ &= 1 + \frac{1}{pq} \sum_{k=1}^{pq-1} k^2 \binom{pq}{k} + (1-p) \frac{k_p(G)}{q} \sum_{l=1}^{q-1} l^2 \binom{q}{l} \\ &+ (1-q) \frac{k_q(G)}{p} \sum_{l=1}^{p-1} l^2 \binom{p}{l}. \end{split}$$

Since

(3.1)
$$\sum_{i=1}^{n-1} k^2 \binom{n}{k} = n(n+1)2^{n-2} - n^2 = n[(n+1)2^{n-2} - n],$$

we can obtain the result

$$|\tilde{G}^{\mathcal{R}}/\mathcal{H}| = 1 + (pq+1)2^{pq-2} - pq + k_p(G)(1-p) \Big[(q+1)2^{q-2} - q \Big] + k_q(G)(1-q) \Big[(p+1)2^{p-2} - p \Big].$$

This completes the proof.

REMARK 3.2. Let p and q be distinct prime numbers. Then we have the following two cases:

- (i) p < q, $p \nmid (q-1)$. In this case, there are only one non-isomorphic group of order pq, the cyclic group \mathbb{Z}_{pq} which is isomorphic to $\mathbb{Z}_p \oplus \mathbb{Z}_q$.
- (ii) p < q, $p \mid (q-1)$. In this case, there are only two non-isomorphic groups of order pq. one of them is the cyclic group \mathbb{Z}_{pq} and the other is a non-abelian group \mathcal{K}_{pq} generated by two elements a and b such that

$$|\langle a \rangle| = p, \quad |\langle b \rangle| = q, \quad ab = b^s a,$$

where $s \neq 1$ and $s^p \equiv 1 \pmod{q}$. In \mathcal{K}_{pq} , there are q subgroups of order p and only one subgroup of order q.

By (i) and (ii) of the above remark, we have the following results.

COROLLARY 3.3. Let p and q are distinct prime numbers. Then

$$(1) |\widetilde{\mathbb{Z}_{pq}}^{\mathscr{R}}/\mathscr{D}| = 1 + \frac{1}{pq} [2^{pq} - 2 + (p-1)(2^{q} - 2) + (q-1)(2^{p} - 2)],$$

$$|\widetilde{\mathbb{Z}_{pq}}^{\mathscr{R}}/\mathscr{H}| = 1 + (pq+1)2^{pq-2} - pq + (1-p) [(q+1)2^{q-2} - q] + (1-q) [(p+1)2^{p-2} - p].$$

(2)
$$|\tilde{\mathcal{K}_{pq}}^{\mathscr{R}}/\mathscr{D}| = 1 + \frac{1}{pq} [2^{pq} - 2 + q(p-1)(2^q - 2) + (q-1)(2^p - 2)],$$

 $|\tilde{\mathcal{K}_{pq}}^{\mathscr{R}}/\mathscr{H}| = 1 + (pq+1)2^{pq-2} - pq + q(1-p)[(q+1)2^{q-2} - q]$
 $+ (1-q)[(p+1)2^{p-2} - p].$

(3)
$$|\widetilde{D_p}^{\mathscr{R}}/\mathscr{D}| = 1 + \frac{1}{2p} [2^{2p} - 2 + p(2^p - 2) + 2(p - 1)],$$

 $|\widetilde{D}_p^{\mathscr{R}}/\mathscr{H}| = 1 + (2p + 1)2^{pq - 2} - 2p - p [(p + 1)2^{p - 2} - p] + (1 - p),$
where D_p $(p \ge 3)$ denotes the Diheral group of order $2p$.

Proof. (1) It follows from that $k_p(\mathbb{Z}_{pq}) = 1 = k_q(\mathbb{Z}_{pq})$.

- (2) It follows from the fact $k_p(\mathcal{K}_{pq}) = q$ and $k_q(\mathcal{K}_{pq}) = 1$.
- (3) It follows from the fact $|D_p| = 2p$, $k_2(D_p) = p$ and $k_p(D_p) = 1$.

To obtain an explicit formula on the number of the Green \mathcal{H} or \mathcal{D} -classes of the Birget-Rhodes expansion of a finite cyclic group of order p^m (p: prime), we begin with the following basic lemma of natural numbers.

LEMMA 3.4. Let $n \neq 1$ be a natural number. Then we have

$$\sum_{k=1}^{m} \sum_{\substack{1 \le l < n^{m-k+1} \\ n \nmid l}} \binom{n^m}{l n^{k-1}} = 2^{n^m} - 2.$$

Proof. It is immediate that for each i = 0, 1, ..., m - 1,

$$|\{ln^i : 1 \le l < n^{m-i}, \ n \nmid l\}| = (n-1)n^{m-i-1}$$

and therefore, $\sum_{i=0}^{m-1} |\{ln^i : 1 \leq l < n^{m-i}, n \nmid l\}| = n^m - 1$. This implies that

$$\sum_{k=1}^{m} \sum_{\substack{1 \le l < n^{m-k+1} \\ n \nmid l}} \binom{n^m}{l n^{k-1}}$$

$$= \sum_{\substack{1 \le l < n^m \\ n \nmid l}} \binom{n^m}{l} + \sum_{\substack{1 \le l < n^{m-1} \\ n \nmid l}} \binom{n^m}{l n^m} + \dots + \sum_{\substack{1 \le l < n \\ n \nmid l}} \binom{n^m}{l n^{m-1}}$$

$$= \sum_{s=1}^{n^m-1} \binom{n^m}{s} = 2^{n^m} - 2.$$

This completes the proof.

THEOREM 3.5. Let G be a cyclic group of order p^m (p, prime). Then we have

$$(1) |\tilde{G}^{\mathscr{R}}/\mathscr{D}| = 1 + \frac{1}{p^m} \left[(2^{p^m} - 2) + (p - 1) \sum_{k=1}^{m-1} p^{k-1} (2^{p^{m-k}} - 2) \right].$$

(2)
$$|\tilde{G}^{\mathscr{R}}/\mathscr{H}| = 1 + \left[(p^m + 1)2^{p^m - 2} - p^m \right] + (1 - p) \sum_{k=1}^{m-1} \left[(p^{m-k} + 1)2^{p^{m-k} - 2} - p^{m-k} \right].$$

Proof. Let $1 \le k \le p^m = |G|$.

Case (i) $k = p^m$. By Lemma 2.11,

$$|\mathcal{A}_k/\mathcal{D}| = |\mathcal{A}_k/\mathcal{H}| = 1.$$

Case (ii) $k \neq p^m$. We divide the following two subcases;

(a) k is not a multiple of p: In this case, $gcd(p^m, k) = 1$. By Lemma 2.11, we have that

$$|\mathcal{A}_k/\mathscr{D}| = \frac{1}{p^m} \binom{p^m}{k}$$
 and $|\mathcal{A}_k/\mathscr{H}| = \binom{p^m-1}{k-1} \cdot k = \frac{k^2}{p^m} \binom{p^m}{k}$.

(b) k is a multiple of p: In this case, the number k can be expressed by the form

$$k = lp^i, \ 1 \le l < p^{m-i}, \ p \nmid l.$$

If $(A, g) \in \mathcal{A}_k$, then $\operatorname{Stab}(A)$ is a subgroup of G with its order p^s for $s \ (0 \le s \le i)$. Let P_t be the subgroup of G with its order p^t . Then by the equation (2.3), we have

$$\begin{split} d_k(P_i) &= \binom{p^{m-i}-1}{l-1} \cdot lp^i, \\ d_k(P_s) &= \sum_{P_s \le K} \mu(K) \widetilde{d}_k(K) = \mu(P_s) \widetilde{d}_k(P_s) + \mu(P_{s+1}) \widetilde{d}_k(P_{s+1}) \\ &= \left[\binom{p^{m-s}-1}{lp^{i-s}-1} - \binom{p^{m-s-1}-1}{lp^{i-s-1}-1} \right] \cdot lp^i \quad \text{for } s \ (0 \le s < i). \end{split}$$

This implies that

$$\begin{split} |\mathcal{A}_k/\mathcal{D}| &= \frac{1}{l^2 p^{2i}} \left[\sum_{s=0}^i p^s \cdot d_k(P_s) \right] \\ &= \frac{1}{l p^i} \left[\binom{p^m - 1}{l p^i - 1} + \sum_{j=1}^i (p^j - p^{j-1}) \binom{p^{m-j} - 1}{l p^{i-j} - 1} \right] \\ &= \frac{1}{l p^i} \binom{p^m - 1}{l p^i - 1} + \sum_{j=1}^i \left(\frac{1}{l p^{i-j}} - \frac{1}{p} \cdot \frac{1}{l p^{i-j}} \right) \binom{p^{m-j} - 1}{l p^{i-j} - 1} \right) \\ &= \frac{1}{p^m} \binom{p^m}{l p^i} + \sum_{j=1}^i \left(\frac{1}{p^{m-j}} - \frac{1}{p^{m-j+1}} \right) \binom{p^{m-j}}{l p^{i-j}} \\ &= \frac{1}{p^m} \left[\binom{p^m}{l p^i} + (p-1) \sum_{j=1}^i p^{j-1} \binom{p^{m-j}}{l p^{i-j}} \right] \end{split}$$

and

$$\begin{split} &|\mathcal{A}_k/\mathscr{H}|\\ &= \sum_{s=0}^i \frac{d_k(P_s)}{p^s}\\ &= lp^i \cdot \binom{p^m-1}{lp^i-1} \cdot + \sum_{j=1}^i \left[lp^{i-j} \cdot \binom{p^{m-j}-1}{lp^{i-j}-1} - lp^{i-j+1} \cdot \binom{p^{m-j}-1}{lp^{i-j}-1} \right]\\ &= \frac{(lp^i)^2}{p^m} \binom{p^m}{lp^{i-j}} + \sum_{j=1}^i \left[\frac{(lp^{i-j})^2}{p^{m-j}} \binom{p^{m-j}}{lp^{i-j}} - \frac{p(lp^{i-j})^2}{p^{m-j}} \binom{p^{m-j}}{lp^{i-j}} \right]\\ &= \frac{1}{p^m} \left[(lp^i)^2 \binom{p^m}{lp^i} + (1-p) \sum_{j=1}^i p^j (lp^{i-j})^2 \binom{p^{m-j}}{lp^{i-j}} \right]. \end{split}$$

Thus we have that

$$\begin{split} & \sum_{\substack{k \\ p \mid k}} |\mathcal{A}_k/\mathscr{D}| \\ &= \sum_{\substack{1 \leq l < p^{m-1} \\ p \nmid l}} |\mathcal{A}_{lp}/\mathscr{D}| + \sum_{\substack{1 \leq l < p^{m-2} \\ p \nmid l}} |\mathcal{A}_{lp^2}/\mathscr{D}| + \dots + \sum_{\substack{1 \leq l < p \\ p \nmid l}} |\mathcal{A}_{lp^{m-1}}/\mathscr{D}| \\ &= \frac{1}{p^m} \left[\sum_{k=1}^{m-1} \sum_{\substack{1 \leq l < p^{m-k} \\ p \nmid l}} \binom{p^m}{lp^k} + (p-1) \sum_{k=1}^{m-1} p^{k-1} (2^{p^{m-k}} - 2) \right], \end{split}$$

where the last equality follows from Lemma 3.4, and

$$\sum_{\substack{k \\ p \mid k}} |\mathcal{A}_k/\mathcal{H}| = \sum_{\substack{1 \le l < p^{m-1} \\ p \nmid l}} |\mathcal{A}_{lp}/\mathcal{H}| + \sum_{\substack{1 \le l < p^{m-2} \\ p \nmid l}} |\mathcal{A}_{lp^2}/\mathcal{H}| + \cdots + \sum_{\substack{1 \le l < p \\ p \nmid l}} |\mathcal{A}_{lp^{m-1}}/\mathcal{H}|$$

$$= \frac{1}{p^m} \sum_{k=1}^{m-1} \sum_{\substack{1 \le l < p^{m-k} \\ p \nmid l}} (lp^k)^2 \binom{p^m}{lp^k} + (1-p) \sum_{k=1}^{m-1} \left[(p^{m-k}+1)2^{p^{m-k}-2} - p^{m-k} \right],$$

where the last equality follows from (3.1).

By Theorem 2.7 and by Corollary 2.8, we conclude that

$$\begin{split} |\tilde{G}^{\mathscr{R}}/\mathscr{D}| &= \sum_{k=1}^{p^m} |\mathcal{A}_k/\mathscr{D}| \\ &= |\mathcal{A}_{p^m}/\mathscr{D}| + \sum_{\substack{k \\ p \nmid k}} |\mathcal{A}_k/\mathscr{D}| + \sum_{\substack{k \\ p \nmid k}} |\mathcal{A}_k/\mathscr{D}| \\ &= 1 + \frac{1}{p^m} \left[\left\{ \sum_{\substack{k \\ p \nmid k}} \binom{p^m}{k} + \sum_{k=1}^{m-1} \sum_{1 \leq l < p^{m-k}} \binom{p^m}{lp^k} \right\} \\ &+ (p-1) \sum_{k=1}^{m-1} p^{k-1} (2^{p^{m-k}} - 2) \right] \\ &= 1 + \frac{1}{p^m} \left[\sum_{k=1}^{m} \sum_{1 \leq l < p^{m-k+1}} \binom{p^m}{lp^{k-1}} + (p-1) \sum_{k=1}^{m-1} p^{k-1} (2^{p^{m-k}} - 2) \right] \\ &= 1 + \frac{1}{p^m} \left[(2^{p^m} - 2) + (p-1) \sum_{k=1}^{m-1} p^{k-1} (2^{p^{m-k}} - 2) \right], \end{split}$$

and

$$|\tilde{G}^{\mathscr{R}}/\mathscr{H}| = \sum_{k=1}^{p^m} |\mathcal{A}_k/\mathscr{H}|$$

$$\begin{split} &= \left| \mathcal{A}_{p^{m}}/\mathscr{H} \right| + \sum_{\substack{k \ p \nmid k}} \left| \mathcal{A}_{k}/\mathscr{H} \right| + \sum_{\substack{k \ p \mid k}} \left| \mathcal{A}_{k}/\mathscr{D} \right| \\ &= 1 + \frac{1}{p^{m}} \left[\sum_{\substack{k \ p \nmid k}} k^{2} \binom{p^{m}}{k} + \sum_{\substack{k=1 \ p \nmid k}} \sum_{1 \leq l < p^{m-k}} (lp^{k})^{2} \binom{p^{m}}{lp^{k}} \right] \\ &+ (1-p) \sum_{\substack{k=1 \ p \nmid k}} \left[(p^{m-k}+1)2^{p^{m-k}-2} - p^{m-k} \right] \\ &= 1 + \frac{1}{p^{m}} \sum_{\substack{k=1 \ p \nmid k}} \sum_{1 \leq l < p^{m-k+1}} (lp^{k-1})^{2} \binom{p^{m}}{lp^{k-1}} \\ &+ (1-p) \sum_{\substack{k=1 \ p \nmid k}} \left[(p^{m-k}+1)2^{p^{m-k}-2} - p^{m-k} \right] \\ &= 1 + \left[(p^{m}+1)2^{p^{m-2}} - p^{m} \right] \\ &+ (1-p) \sum_{\substack{k=1 \ k=1}}} \left[(p^{m-k}+1)2^{p^{m-k}-2} - p^{m-k} \right]. \end{split}$$

This completes the proof.

REMARK 3.6. Let G be a group of order p^2 (p, prime). Then G is isomorphic to \mathbb{Z}_{p^2} or $\mathbb{Z}_p \times \mathbb{Z}_p$ and therefore

$$(1) |\widetilde{\mathbb{Z}_{p^{2}}}^{\mathscr{R}}/\mathscr{D}| = 1 + \frac{1}{p^{2}} \left[2^{p^{2}} - 2 + (p-1)(2^{p} - 2) \right],$$

$$|\widetilde{\mathbb{Z}_{p^{2}}}^{\mathscr{R}}/\mathscr{H}| = 1 + (p^{2} + 1)2^{p^{2} - 2} - p^{2} + (1-p) \left[(p+1)2^{p-2} - p \right].$$

$$(2) |\widetilde{\mathbb{Z}_{p} \times \mathbb{Z}_{p}}^{\mathscr{R}}/\mathscr{D}| = 1 + \frac{1}{p^{2}} \left[2^{p^{2}} - 2 + (p+1)(p-1)(2^{p} - 2) \right],$$

$$|\widetilde{\mathbb{Z}_{p} \times \mathbb{Z}_{p}}^{\mathscr{R}}/\mathscr{H}| = 1 + (p^{2} + 1)2^{p^{2} - 2} - p^{2} + (p+1)(1-p) \left[(p+1)2^{p-2} - p \right].$$

Finally, we give a Table 2 on the number of the Green \mathcal{H} and \mathcal{D} -classes of the Birget-Rhodes expansions of groups with order ≤ 10 .

G = n	The type of groups	$ ilde{G}^{\mathscr{R}}/\mathscr{D} $	$ ilde{G}^{\mathscr{R}}/\mathscr{H} $
1	trivial group	1	1
2	\mathbb{Z}_2	2	2
3	\mathbb{Z}_3	3	6
4	\mathbb{Z}_4	5	16
	$\mathbb{Z}_2 imes\mathbb{Z}_2$	6	14
5	\mathbb{Z}_5	7	44
6	\mathbb{Z}_6	13	100
	$S_3 = D_3$	15	90
7	\mathbb{Z}_7	17	250
8	\mathbb{Z}_8	35	552
	$Q_4 = \text{Quaterion}$	36	550
	$\mathbb{Z}_2 imes\mathbb{Z}_4$	39	511
	D_4	42	494
	$\mathbb{Z}_2 imes \mathbb{Z}_2 imes \mathbb{Z}_2$	45	478
9	\mathbb{Z}_9	59	1262
	$\mathbb{Z}_3 imes \mathbb{Z}_3$	63	1232
10	\mathbb{Z}_{10}	107	2760
	D_5	119	2588

Table 2. The number of the Green \mathscr{D} and \mathscr{H} -classes of $\tilde{G}^{\mathscr{R}}$.

References

- [1] J. Baillieul, Green's relations in finite function semigroups, Aequationes Math. 7 (1971), 22-27.
- [2] J.-C. Birget and J. Rhodes, Almost finite expansions of arbitrary semigroups, J. Pure Appl. Algebra **32** (1984), no. 3, 239–287.
- [3] _____, Group theory via global semigroup theory, J. of Algebra 120 (1989), no. 2, 284-300.
- [4] K. Choi and Y. Lim, Birget-Rhodes expansion of groups and inverse monoids of Möbius type, Internat. J. Algebra Comput. 12 (2002), no. 4, 525-533.
- [5] R. Exel, Partial actions of groups and actions of inverse semigroups, Proc. Amer. Math. Soc. 126 (1998), no. 12, 3481-3494.
- [6] J. M. Howie, An Introduction to Semigroup Theory, Academic Press, San Diego, 1976.
- [7] J. Kellendonk and M. V. Lawson, *Partial actions of groups*, Internat. J. Algebra Comput. **14** (2004), no. 1, 87–114.
- [8] M. V. Lawson, *Inverse semigroups*, The theory of partial symmetries, World Scientific Publ, Singapore, 1998.
- [9] M. B. Szendrei, A note on Birget-Rhodes expansion of groups, J. Pure Appl. Algebra 58 (1989), no. 1, 93–99.

Keunbae Choi, Department of Mathematics Education, Jeju National University of Education, Jeju 690-061, Korea

E-mail: kbchoe@jejue.ac.kr

Jaeun Lee, Department of Mathematics, Yeungnam University, Kyongsan 712-749, Korea

E-mail: julee@yu.ac.kr

YONGDO LIM, DEPARTMENT OF MATHEMATICS, KYUNGPOOK NATIONAL UNIVERSITY, TAEGU 702-701, KOREA

 $E ext{-}mail: ylim@knu.ac.kr$