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GREEN’S EQUIVALENCES OF BIRGET-RHODES
EXPANSIONS OF FINITE GROUPS

KEUNBAE CHOI, JAEUN LEE, AND YONGDO LiM

ABSTRACT. In this paper we establish a counting method for the
Green classes of the Birget-rhodes expansion of finite groups. As an
application of the results, we derive explicit enumeration formulas
for the Green classes for finite groups of order pg and a finite cyclic
group of order p™, where p and q are arbitrary given distinct prime
numbers.

1. Introduction

An expansion defined by Birget and Rhodes [2] can be though of
a systematic way of writing semigroups S as homomorphic images of
other semigroups S; some important properties of S are preserved in S.
Among various almost finite expansions of semigroups investigated by
Birget and Rhodes, we are mainly interested in the following particular
expansion of a semigroup S, which is called the Birget-Rhodes expansion
of S: For any finite sequence (s, 2, ..., sp) of elements s1, s, ..., s, in
S, put

P(s1,82,...,8n) :={1,51,5182,...,58182" " Sn },

where 1 is the identity of S*. Define
S% .= {(P(s1,82,-..,8n),8182 " Sp) : §1,82,...,8, € S,n > 1}
with the multiplication
(P(s1,82y.-+,8n),8182 - Sn)(P(t1,t2,. .., tm), t1t2 - - tm)

— (P(81782,'..,3n) U (8132...8n)
- P(t1,ta,...,tm), 8182 - Sptita - tm)

Received March 09, 2005.

2000 Mathematics Subject Classification: 20M18.

Key words and phrases: Birget-Rhodes expansion, Green’s equivalence.

This research was supported by Yeungnam University research grants in 2002.



354 Keunbae Choi, Jaeun Lee, and Yongdo Lim

where s-U = {su:u € U} for s € Sand U C S. Then $% is a semigroup.
And it turns out [9] that when S = G is a group, v

GZ = {(A,9) e PI(G) x G : g€ G},

where Pj(G) denotes the set of all finite subsets of G containing the
identity 1¢ of G.

In [9] Szendrei showed that the Birget-Rhodes expansion ()% as
a natural functor from the category of groups into the category of F-
inverse semigroups is the left adjoint of the functor assigning the great-
est group homomorphic image to every F-inverse semigroup. In [3] the
authors derived a new approach to the Burnside problem using the resid-
ually finiteness of the Birget-Rhodes expansion (~)

In [5] Exel constructed, in a canonical way, an inverse monoid S(G)
associated with a group G defined via generators and relations. He
established the one-to-one correspondence between actions of S(G) on
a set X (an action of an inverse semigroup S on the set X is a unital
homomorphism from S to the symmetric inverse monoid I(X)) and par-
tial actions of G on X, with its applications on graded C*-algebras. In
[7] Kellendonk and Lawson observed that the inverse monoid S(G) con-
structed by Exel is exactly the same as the Birget-Rhodes expansion G®
of the group G. In [4], the authors prove that if a group G acts faithfully
on a Hausdorff space X and acts freely at a non-isolated point, then the
Birget-Rhodes expansion G® of the group G is isomorphic to an inverse
monoid of Mébius type which mainly aries in conformal geometry.

In this paper, we restrict our attention to the “finite” Birget-Rhodes

expansion (-) functor from the category of finite groups into the cat-
egory of finite F-inverse semigroups in which natural counting prob-
lems depending on the group structures arise. Beside its importance in
studying finite semigroups, the problem counting Green ., % ¥, and
H-classes of GZ of a finite group G looks very natural in the theory
of finite inverse semigroups (cf. [1]). Although it is shown by a direct
approach (Theorem 2.5) that both the Green . and %-classes of the
Birget-Rhodes expansion GZ consist of 2161=1 classes that looks inde-
pendent on the group structures of GG, but the number of the Green &
or ¥ -classes are heavily depend on the group structures of G.

Our main objective of this paper is to count the Green classes of the
Birget-Rhodes expansion of a finite group.

As an application of the results, when G is a finite group of order pg
or a finite cyclic group of order p™, we obtain an explicit formula on the
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mumber of the Green classes for G, where p and q are distinct primes is
given in section 3.

2. Green’s relations on GZ

In the following, we always assume that G is a finite group of order
n. For a subset A of G, we denote |A| by the number of elements of A.
By A < G we shall mean that A is a subgroup of G.
Green’s relations on an inverse monoid S are defined as follow: for
s,t €S,
sAt—=>ss P =tt s Lt s ls=t"1
s ft<= SsS=5t5,0=%NZL.
The relations % and . commute under composition. The Green Z-
relation is then defined by

D=Fo0L =20

These relations are equivalence relations on S, and they play an im-
portant role in the investigation of the structure of semigroups ([6, 8]).
Observe that
' H=RNLCRIVLCIC L.
For a € S, %o, %a, Fa, 7, and P, denote the &L, %, 7,5, and Z-
classes of a in S, respectively.
The set GZ defined by

GZ = {(A,g) e PL(G)x G : ge A}

is an inverse monoid, called the Birget-Rhodes expansion (|2, 3, 9]) of the
group G, under the multiplication (4, g)(B,h) = (AU g - B, gh), where
g-B = {gb: b € B}. It is known [9] that the Birget-Rhodes expansion G¥
of G is an F-inverse monoid whose maximum group image is isomorphic
to the given group G.

For a subset A of G, the stablizer of A is defined by

Stab(A) :={g € G: gA = A}.
Then Stab(A) is a subgroup of G.
LEMMA 2.1. Let (A,g),(B,h) € G%. Then we have
(1) (A,9) % (B, h) if and only if A = B, and hence
RKag) = {(A,a) : a € A}
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(2) (A,9)Z (B, h) if and only if g1 A = h™' B, and hence
Lag = {(a™'A,a™1g) : a € A}.
(3) (4,9) 2 (B, h) if and only if A= kB for some k € G, and hence
Diag) ={(k"*A,h) : k€ A and h € k™1 A}
4) 2=_2.
(5) (4,9) 5 (B,h) if and only if A= B = hg~1 A, and hence
Hag) = {(A,s9) : s € Stab(A)}.
In particular, the maximal subgroup H(A,1) is isomorphic to
Stab(A).
Proof. (1) is straightforward.
(2) The first statement is clear and the second comes from
Liag=1{(B,h) € G¥:B=hg 'A} = {(hg7'A4,h) : he A7lg}.

(3) Suppose that (4, g) 2 (B, h). Then there exists an element (C, f)
in G# such that (4,9)2 (C,f) and (C,f)Z (B,h). By (1) and (2),
we have g7'4A = f~1C and C = B and hence A = gf'B. Con-
versely, suppose that A = kB for some k € G. Then (B,k 1g) ¢
G%, (A, g) % (B,k™1g), and also (B,k™1g) % (B, h). This implies that
(4, 9) 2 (B, h). Moreover,
Diag ={(k"A,R) € G . ke G}={(k"'A,h) k€ Aand h e k' A}.

(4) Let (A, g) 2 (B, h) and (A4, g) < (B, h). Then by (3), we have A =
kB for some k € G, B C A, and g = h. This implies that (4, g) = (B, h).
By Corollary 19 of 3.2 in (8], we have 2 = _#.

(5) The first statement comes (1) and (2), and the second comes
from the fact that H(A,1) is equal to the Green J#-class of (4,1) in
G%. Moreover,

Hag ={(A,h) € G¥ : hg7!A = A} = {(A,h) € G : h € Stab(4)g}
= {(A,sg) : s € Stab(A)}.

This completes the proof. O
Notice that Stab(A) acts freely on the set A by left multiplication
Stab(A) x A — A, ¢-a = ga.

By the Burnside Lemma, the number of orbits is
4]

(2.1) ’A/Stab(A)’ = S]]
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COROLLARY 2.2. Let (A, g) € G%. Then
D) [Zagl = 1%l =14l
A
(2) 1D(a.9) = | £ (4.9 = ey < |41
(3) |#a,9)| = |Stab(A)].
Proof. (1) It comes from Lemma 2.1 (1) and (2).
(2) We observe that for k, k' € A, k™'A = (k')A if and only if
k'k~! € Stab(A) if and only if ¥’ € Stab(A)k. Now, by Lemma 2.1 (3)
and (2.1), we have
4]
[Stab(A)|
(3) By Lemma 2.1(5), we have |54 o)| = |Stab(A)g| = [Stab(A)|. O

(9 (a)] = |A/Stab(4)| - 14] = Al < AP

COROLLARY 2.3. Let (A,9) € G%. Then A is a subgroup of G if and
only if |9 4,)| = |Al. In this case, we have that D4 4y = {(4,9) : g € A}.

Proof. Suppose that A is a subgroup of G. Then Stab(A) = A. This
implies that |A/Stab(A)| = 1, and hence by Corollary 2.2 (2), D4, =
|A/Stab(A)] - | ] = |A]

Conversely, suppose that |Z4 q)| = |A|. Let z,y € A. Since |A/Stab
(A)| = 1, there exists g € Stab(A) such that gz = y. This implies that
zy ! = g1 € Stab(A) and thus zy !4 = A. Because lg € A, zy~ 1 € A
and hence A is a subgroup of G. O

REMARK 2.4. Each Z-class in a semigroup is a union of .#-classes
and also a union of #Z-classes. If the intersection of an .#Z-class and an
Z-class is none empty set, then it is an S#-class. We may visualize a
P-class in a finite semigroup as “eggbox” diagram in Figure 1.

1 2 m

Figure 1. Eggbox

In this diagram each row represents an %-class, each column represents
an .#-class, and each cell an #-class. In the case of our semigroup G%,
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each Z-class P4 4) forms the square eggbox, n = m = Ft_a[% from
Corollary 2.2.

THEOREM 2.5. We have
(1) |G#/ 2| = |G* || = 21911,
~ A|
2) |G% ) #| = —'——.
BHEIHI= iy b (A
Proof. (1) It is immediate to see that for each £ = 1,2,...,n = |G|,

(a9 a=mi=(32}) &

By Corollary 2.2 (1), we have

[{(4,9) € G¥ - |A] = K}/ 2| = [(Zi) "“] ) (Z:i)

and hence
n
AR _ n—1 _ on—1
|G /$|_;(k_1) =21,
(2) This results follows from Lemma 2.1 (5) and Corollary 2.2 (3). O

LEMMA 2.6. Let (A,g),(B,h) € G# with (A, g) 2 (B, h). Then
(1) |A] =8|,
(2) |Stab(A)| = |Stab(B)|.
In particular, if G is abelian, then Stab(A) = Stab(B).
Proof. (1) By Lemma 2.1, A = kB for some k € G, and hence |A4| =
|B|.
(2) By Corollary 2.2,
|AI/ISt2b(4)] = |9(4.)| = |2(5.0] = |BP/|Stab(B).

Thus |Stab(A)| = |Stab(B)| from (1). Assume that G is abelian. Since
(A,9) 2 (B,h), by Lemma 2.1, A = kB for some k € G. Let a € Stab(A).
Then aA = A, and hence B =k 'A =k 'aA=ak 'A=aB. Thusa €
Stab(B). Conversely, if b € Stab(B), then bA = bkB = kbB = kB = A,
and hence b € Stab(A). O

For 1 < k,m < |G| and a subgroup S of G, we set

A ={(A,9) € G* : |A| =k}, di(S) = |{(A,g) € A : Stab(4) = S}|,
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and
de(m)= Y di(9).
S<G,|S|=m
THEOREM 2.7. We have
|G|

G%12| =Y 1A/ 2
k=1
and for each k,

k
m
|Ax/ 9| = E ﬁ'dk(m kg E |S] - di(S
m=1 S<G

Proof. 1t follows by Lemma 2.6 (1) that \G%)/@l E |Ag/2|. Note
that Ay, is the disjoint union of the sets {(4,9) € Ay : ]Stab(A)l = m},

Ar = | {(4,9) € A : |Stab(A4)] = m}.

m=1
By Lemma 2.6 (2), we have |Ax/Z| = z {(4,g) € A : |Stab(A)| =
m}/9)|. Since
{(A9) € A : [Stab(A)| =m} = (] {(A4,g) € A¢: Stab(4) = S},
S<G,|S|l=m
it follows from Corollary 2.2 that

[((4,9) € Ay : Stab(4)| = m}/2|

. 'S' [{(4,9) € A : Stab(4) = 5}
SSG,lS‘:m
Therefore,

k k
/2= Y %-dk(S) =Y g - di(m
m=1

m=1$<G,|S|=m
Now, if |S| > k then {(A4,g) € Ay : Stab(A) = S} = 0 and hence

k
Y Y Bl =5 s as)

m=18<G,|S|=m s<G
This completes the proof. O
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COROLLARY 2.8. We have
|G|
6%/ =

k=1S5<G

Proof. By Corollary 2.2 (2), |Z(4,4)| = |A]*/|Stab(A)|. For each (B, h)
€ D(4,g), by Corollary 2.2 (3) and Lemma 2.6, |A| = |B| and |5#]p )| =
|Stab(B)| = [Stab(A)|. This implies that the number of s#-classes in
D (a,q) is |A]*/|Stab(A)|? (See Figure 1). By Theorem 2.7, we have

2 IGI IG) dk(S
sG /%l Z kz‘Sldk 'S|2 Z Z

S<G@ k=1 S<G

O

From Theorem 2.7 and Corollary 2.8, we can see that the counting

problem on the number of Green 4% and Z-classes of the Birget-Rhodes

expansion of a finite group G is eventually that problem on dg(S) for

each k (1 < k < |G|) and for each subgroup S. Let S be a fixed subgroup
of G and let '

di(S) ={(A,9) € Ay : S < Stab(A)}|.
It is clear that

(2.2) de(S) = di(K)

S<K

To calculate di(S) in terms of di(K), one can invert the equation (2.2)
by introducing the Mébius function for G. This assigns an integer u(K)
to each super-subgroup K of § by recursive formula

| ifS=H
Z"(H)z{ 0 ifS<H
S<H

Then we have

(2.3) a(S) = 3 w(K) d(K).

S<K

LEMMA 2.9. Let A C G. Then A is a union of right cosets of the
subgroup Stab(4) in G.

Proof. Straightforward. O
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LeMMA 2.10. Let K be a subgroup of G and let 1 < k < |G|. Then

16l _
~ K] g . ..
dy(K) = e k if |K| is a divisor of k,
[K]
0 otherwise

where (8) is defined to be 1.

Proof. Let | = % By definition, Jk(K ) is non-empty implies that
| K| divides k. Thus it suffices to show that
{(4,9) € Ay : K < Stab(4)}
={(Bh)eA:B=KUKgU---UKg_1, g € G}.
Let (A,9) € Ag such that K < Stab(A4). Then Stab(A) is a union
of right cosets of the group K in Stab(A). By Lemma 2.9, the set A
is a union of right cosets of the group Stab(A) in G. Conversely, if
B=KUKg U---UKg_1 with |B| = k, then obviously the group K
is contained in Stab(B). This completes the proof. O
LEMMA 2.11. Let 1 < k,m < |G|. Then
(1) If m t k, then dg(m) = 0.
(2) If ged(|G|, k) = 1, then

di(m) = { (lil:1l) 'k, ifm=1,

0, otherwise,
and hence
_ 1 (6] _
| A/ 9| = @ ( k ) and |Ag/ 5| = | Ag|.
_J G|, ifk=|G|
(3) di(|GI) _{ 0, otherwise.

(4) |Ax/ 2| = |An—k/2|.

Proof. (1) Suppose that di(m) # 0. Then by definition there exists a
subgroup S of order m and a subset A with |A| = & such that Stab(A) =
S. By (2.1), m|k.

(2) Suppose that di(m) # 0. Then m divides |G| since it is an order
of a subgroup. Since ged(|G|, k) = 1, m must be equal to 1. Thus

a= T ds) =atian = (51 -k

5<G,|S|=1
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It then follows by Theorem 2.7 and Corollary 2.8 that

N G

(3) 1t follows from the fact that di(|G]) = di(G) = di(G) and from
Lemma 2.10.

(4) By Theorem 2.7 and Lemma 2.10,

a1
[Ak/2] =) |S|[Z HK) - %(@ 1)] (1[0

s<¢ Ls<k TK]
Since
f(E ) ()
k — n—k ’
S (A
we have
1 (w1
/21 =3 18] [Z ) (] )] Y
s<¢  Ls<k w1
This completes the proof. O

REMARK 2.12. If G is a trivial group, then |G#/9| = 1. By Lemma
2.11 (4), we have that if |G| = 2, then |G#/2| = 2 and if |G| > 3, then

|G|
IG% /9| = Z | AL/ 2
Gl—1
2
3+ A /2| +2 3 [|Ak/2|, if|G]is even,
2 k=2

G|-1

2
3+2 > |Ax/2, if |Gl is odd.
k=2



Green’s equivalences of Birget-Rhodes expansions 363

EXAMPLE 2.13. Let G = Zg @ Z. Then G has the following lattice
diagram of subgroups:

G

AT Ay A3\

| B

c \

Dy Ds Ds
\1G/
where
= ((1,0)), A2 =((1,1)),
={(0,0),( 0),(2,1),(4,0),(4,1),(0, 1)},
= {(0,0), (0, 1) (3,0),(3, 1)}, C=((2,0)),
=((3,0)), Dz =((3,1), D3 =((0,1)).

Applying Lemma 2.11, we have that
[A12/2| = 1,|A12/ 37| = 1,|A11/D| = 1,| A1 /€| = 121,
|A7/D| = 66, | A7/ | = 3234, |As /| = 1650, | A1/ = 1.
Next, we will compute the case |Ag/2|. The remaining cases are similar.

Let (A, g) € As. Then |Stab(A)| = 6 or 3 or 2 or 1. Using (2.3) and
Lemma 2.10,

ds(Ai) = Y w(K)ds(K) = (é) -6 =6 for each i = 1,2, 3,

A<K

(€)= 3 wK)(K) =1- (3) -6-3-6=0

C<K
de(Di) = > w(K)de(K)
D;<K
=1- (;)‘-6— 1-6=54 for each i =1,2,3,
wlich = 3 uiodi) =1+ (3 )-6-1-(3) -0

le<K

+3-(—1)-(2)-6+3-1~6=2592,
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Now, we evaluate |Ag/ 2| and |Ag/ 5| as follows.

|46/ 2| = 622t8| do(S)

S<G
3
i=1 i=1
=72+34+9=84
3 _ 3 .
| Ag/ | = SgG dTgT) _ dﬁ({llG}) n ; ds(ﬁAz) +; d6(2D@)

= 2592 + 3 + 81 = 2676.
We have the following table on | A/ 2| and |Ay/H#|:

[ & [+ 2 3 4 5 6 7 8 9 10 11 12}

|[Ax/20 |1 7 19 45 66 84 66 45 19 7 1 1
A/ 111 19 163 633 1650 2676 3234 2532 1467 475 121 1

TABLE 1. |Ag/2| and | A/

We conclude from Theorem 2.7, Corollafy 2.8, and Table 1 that
|G% /9| = 361 and |G# /5| = 12972.

3. Enumeration formulas

In this section we will find an explicit formula on the number of the
Green % or P-classes for finite groups of order pq or for finite cyclic
groups of order p™ where p and ¢ are distinct prime numbers.

Let kp(G) denote the number of subgroups of G having order p.

THEOREM 3.1. If G is a group of order pq (p # q,p,q : prime), then
we have

(1) 16%/9] =1+ [ -2 + (@)~ D" ~2)
+ ko(G) g~ 1)(2” - 2)].
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(2) |G#/ 2| = 1+ (pg+ )22 = pg + kyp(G)(1 — p) (g +1)2772 — g
+kg(G)(1—q)|(p+1)2P72 —p].

Proof. Let 1 < k < pq = |G|. We consider the following cases:
Case (i) k = pq. By Lemma 2.11,

|Ax/2| =1 and |Ax/5#| = 1.

Case (ii) ged(pg, k) = 1. By Lemma 2.11, we find that

_1(prq _(pa-1\ . _ 1 ,(pg
9= 5 () amt or = () o= 0 ()

Case (iii) k =1Ip, 1 <1 < ¢g—1:1In this case,

ap= Y =k (17])

S<G,|S|=p
e 5w [ (i) »

Therefore

Ae/] = 5 - du(p)(@) +1- ()}

oo [(122)
) s )] )

=0 ) 5 ()
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and

AR/ | = de({lch+ > @

5<G,|S|=p 151

- [ 0w (172) o] (i)
- 02 () 9 ()2 ()

- %@[(1—p)'l2(?) +1—o%'(lp)2(ll)§)'

Case (iv) k =1lg, 1 <1 < p—1:1In this case, we have that

A9 = S (F) o (00) B (F)
a0 (0) 55w (7)

Therefore by Theorem 2.7, we have

and

lAk/%l — k(I(G)

G# /9| = 2|Ak/@|

g—1 p—1
= |Ape/ 2| + Z A/ 2| + Z'Alp/@| + Z|Alq/@|
1<k<pg =1 =1
ged(k,pg)=1

- E 52052 0)

1<k<pgq
ged(k,pq)=1
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g—1

202 ()
OO (0 L5 ()

—14 plq[zm 24 ky(G)(p— 1)(2 — 2)
+kq(G) (g — 1)(2P - 2)]
and also by Corollary 2.8, we have

|G# )|

Pq
=Y A/ #|

k=1
= |[Apg/ |+ D | A/

1<k<pq
ged(k,pg)=1

+ §|A,p/%] + §|Alq/%’|
=1 =1
z KBS

1<k<pgq =1
ged(k,pg)=1

1
rq
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we can obtain the result

(G# /] = 1+ (pg + )27 — pg + kp(G)(1 — ) | (g + )22 - ¢

+ k(@)1 - @) (p+ 122~ p].
This completes the proof. (|

REMARK 3.2. Let p and ¢ be distinct prime numbers. Then we have
the following two cases:

(i) p < g, pt (g —1). In this case, there are only one non-isomorphic
group of order pg, the cyclic group Zp, which is isomorphic to Z, & Z,.

(i) p < q, p| (g—1). In this case, there are only two non-isomorphic
groups of order pg. one of them is the cyclic group Z,, and the other is
a non-abelian group K,q generated by two elements a and b such that

)l =p, [(B)l=4q, ab="b,

where s # 1 and s = 1 (mod g¢). In Kp,, there are q subgroups of order
p and only one subgroup of order gq.

By (i) and (ii) of the above remark, we have the following results.

COROLLARY 3.3. Let p and q are distinct prime numbers. Then

(1) 12 /2] =1 +;31;[2m—2+(p~ 1)(27 ~ 2) + (g — 1)(2P - 2)],
Zpq” /] = 1+ (pg + )22 — pg + (1 - ) [(q +1)2972 — g
+(1-g)[(p+1)22 - p].
() Wy /2= 1+ ;}q-[%’q —2+q(p - 1)(27 - 2) + (¢ - 1)(2 - 2)],
|’C~mg/%| =1+ (pg+ 1)2P72% — pq + ¢(1 — p) [(q +1)292 q]
+(1-9q) [(p+ 1)2v~2 —p].
(3) 15, /2| =1+ 5%[2219 — 2+ p(2P — 2) +2(p — 1)],
(DF/#] = 1+ (2p+ 12972 = 2p— p[(p+ 1272 —p| + (1~ p),
where D, (p > 3) denotes the Diheral group of order 2p.

Proof. (1) It follows from that ky(Zpg) = 1 = kg(Zpg).

(2) It follows from the fact k,(Kpq) = g and kq(Kpq) = 1.

(3) It follows from the fact |Dp| = 2p, ko(Dp) = p and ky(D,) =
1. 0O
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To obtain an explicit formula on the number of the Green 4% or 2-
classes of the Birget-Rhodes expansion of a finite cyclic group of order
p™ (p : prime), we begin with the following basic lemma of natural
numbers.

LEMMA 3.4. Let n (# 1) be a natural number. Then we have
m nm
DS ( ) —" o,
Ink~1
k=11<i<nm~—k+1
nfl
Proof. 1t is immediate that for each 1 =0,1,...,m — 1,
{in':1 <1 <™ ntl} = (n—1)nm 41
m—1 . .
and therefore, > |{in*:1 <1 <n™* ntl}| =n™ — 1. This implies
/=0
that '
m nm
X ()

<,nm k41
nfl

- 20 2 () 2 )

1<l<n™ 1<i<nm—1 1<l<n
nfl nil n{l
nm—1 m
n ™m
> ( ) _o o,
s=1 5
This completes the proof. O

THEOREM 3.5. Let G be a cyclic group of order p™ (p, prime). Then
we have

(1) 16%/2| =1+ pim {(2?’" C) -1 Y P —2)

k=1

(2) |é@/ff|:1+[<pm P m]

™k 4 1)2 m=k_2 __pm—k] '

g

Proof. Let 1 <k <p™= IGI
Case (i) £k = p™. By Lemma 2.11,

|Ak/D| = |Ae/ 7| = 1.
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Case (ii) k # p™. We divide the following two subcases;
(a) k is not a multiple of p : In this case, ged(p™, k) = 1. By Lemma
2.11, we have that

A/ D) = p—}n (p;n ) and | Ay /| = <p;:_‘11) k= I’j_i (p;n).

(b) k is a multiple of p : In this case, the number & can be expressed
by the form

k=1Ip', 1<l<p™ ptl

If (4, g) € Ay, then Stab(A) is a subgroup of G with its order p° for
s (0 < s < i). Let P, be the subgroup of G with its order pt. Then by
the equation (2.3), we have

m—i -1 .
di(Py) = (” - )-lp’,

Q(Ps) = 3 w(K)a(K) = p(P)dk(Py) + p(Pos1)di(Pos1)
P,<K

pm—s —1\ pm—s—l -1 ; .
= . -— . . < .
[(lpz—s _ 1> (lpz—s_l _1 lp for s (O s < Z)

This implies that

'Ak/gl = # I:Zps.dk(Ps)
s=0

R T AN RN o B

=35 | (1) 20 (D)

1 pm—1 /111 i 1

()2 ) (70)
= [HRED wli]
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and
A/ |
_ Z dy(P;)
s=0 P
) P — i . pm—j -1 — pm—j -1
= Ipt. , . Ipt=J . o _ Iyl o
F (lzoz -1)7" = [p (lp"f - 1) lp 7 -1

_ W S [T (I ppt ) (P
pm lpz—-] = pm—-] lpz—j pm—] lpz—]

i

HMo——s

Thus we have that

> 1A/ 2|
k
pik .
= > A/l + ) AR/l 4+ D |Apn-1/2
1<l<p™1 1<l<p™~2 1<i<p
ofl otl il

B 1 m—1 pm m—1 . pm—k
~5,;[Z > (lpk>+(p—1)kz=;p’“ @ =2),

k=1 15l<pm—k

P

where the last equality follows from Lemma 3.4, and

DA/ = D A+ D A/
k

1<l<pm-1 1<l<p™—2
plk ol i
oot D | Aymer [
1<l<p

ol
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1 m—1 m
— (w2 ( P
™ IpF

where the last equality follows from (3.1).
By Theorem 2.7 and by Corollary 2.8, we conclude that

IG%) 9| = Z|Ak/@|
= ;A,,m/@| + ) | A/2| + > A/ 2|

k k
ptk plk
1 p™
=1+ m {Z( ) kzl <lzﬁk(lpk)}
pik =
m—1
+(p-1) Y Pt - 2)}
k=1

w2 2. )

k= 11<l<pm k+1

H

m—1
+p-1) P —2)
k=1

and

G# )| = ZIAk/%I
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= [Apm /] + | Ax/ ] + 3| Ax/ 9|

k k
ptk plk
egTef)- S v e

pli?k k= 11<z;}f1plm—’c

m—1
— m—k pm—k_9 m—k

+(1~-p) (@™ +1)2 P
k=1

This completes the proof. O

REMARK 3.6. Let G be a group of order p? (p, prime). Then G is
isomorphic to Z, or Zy x Z, and therefore

(1) 122" /9] =1+ 5[ -2+ - D@ -2)],
]sz [ =1+ (p +1)2P-2 —p2 4+ (1-p) [(p +1)20-2 _p]'
(2) lzmp%/gl =1 +Z% [21’2 -2+ (p+1)(p—1)(2F - 2)] ,
|Z;;/Zp%/9f| =1+ (p?+1)2°"2 — p?
+(p+ 1) -p)[(p+1)27% —p].

Finally, we give a Table 2 on the number of the Green S# and Z-
classes of the Birget-Rhodes expansions of groups with order < 10.
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|Gl =n I The type of groups | |G% 2| | |GZ | #|

1 trivial group 1 1
2 Zo 2 2
3 Zs 3 6
4 Zy4 5 16
Zz X Zg 6 14
5 Zs 7 44
6 Zg 13 100
Ss = D3 15 90
7 Ze 17 250
8 Zsg 35 552
24 = Quatenion 36 550
Zo X 24 39 511
Dy 42 494
Zz X Zg X ZQ 45 478
9 Zg 59 1262
Z3 X Z3 63 1232
10 Z10 107 2760
Ds 119 2588

TABLE 2. The number of the Green 2 and S#-classes of GZ%.
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