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THE QUASIHYPERBOLIC METRIC AND ANALOGUES
OF THE HARDY-LITTLEWOOD PROPERTY
FOR a =0 IN UNIFORMLY JOHN DOMAINS

Kiwon KiMm

ABSTRACT. We characterize the class of uniformly John domains
in terms of the quasihyperbolic metric and from the result we get
some analogues of the Hardy-Littlewood property for @ = 0 in
uniformly John domains.

1. Introduction

Suppose that D is a subdomain of euclidean n-space R", n > 2. Let
R"” = R" U {o0}. Let B(z,r) = {w: |w—z| < r} for z € R and r > 0.
Let £(7) denote the euclidean length of a curve v, and dist(A4, B) denote
the euclidian distance from A to B for two sets A, B C R". Let dia(y)
denote a diameter of ~.

Adomain D Cc R isa conformal disk if it is conformally equivalent to
B(0,1); i.e., D is a conformal disk if and only if 8D is a non-degenerate
continuum.

A domain D in R" is said to be b-uniform if there exists a constant
b > 1 such that each pair of points z; and x5 in D can be joined by a
rectifiable arc v in D with

£(v) < blzy — 2]
and with

(1.1) minzé(v(:vj,fﬂ)) < bdist(z,0D)
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for each x € y, where y(z;,z) is the part of v between z; and x.
We define two internal metrics pp(z,y) and Ap(z,y) by

pp(z,y) = inf dia(y), Ap(z,y) = inf £()

for z, y € D. Here infimums are taken over all open arcs v which join z
and y in D. Obviously |z — y| < pp(z,y) < Ap(z,y).

We say that D is a b-uniformly John domain if there exists a constant
b > 1 such that each pair of points z1, 2 € D can be joined by an arc
v C D which satisfies (1.1) and

(1.2) £(v) < bpp(x1,22).

A domain D is said to be a b-John domain if there is a constant b > 1
such that each pair of points x1,z2 € D can be joined by an arc v in D
which satisfies (1.1) [16]. We call a simply connected John domain in
R? a John disk.

A uniformly John domain is a domain intermediate between a uniform
domain and a John domain. By definition

uniform & uniformly John & John.

Balogh and Volberg [1], [2] introduced a uniformly John domain in con-
nection with conformal dynamics.

Given a set A in R™, we let Lip,(A), 0 < a < 1, denote the Lipschitz
class of mapping f : A — RP satisfying for some constant m < oo such
that

(1.3) |f (1) = f(@2)] < mley — zo|*

for all 1 and x5 in A. If D is a domain in R™, then f : D — RP is said
to belong to the local Lipschitz class, locLips (D), if there is a constant
m < oo such that (1.3) holds whenever z, x5 lie in any open ball which
is contained in D.

In Lip, (D) and locLip, (D) we shall use seminorms || f||o and || f]|¢,
respectively, which mean the infimum of the numbers m for which (1.3)
holds in the corresponding set.

A domain D C R" is called a Lip,-extension domain if there exists a
constant a depending on D, « and p such that f € locLip,(D) implies
f € Lipy (D) with

1flla < allFI1%
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Suppose that f is analytic in D C R2. If f is in Lip, (D), then it is
not difficult to show that

|f'(2)| < mdist(z,0D)>?

in D. Conversely, we have the following well known result of Hardy and
Littlewood.

THEOREM 1.1. [8] If D is an open disk and f is analytic in D with

(1.4) |f'(2)] < mdist(z,0D)*"!
for all z € D and for every o € (0,1], then f € Lip,(D) with
cm
1l < <2

where c is an absolute constant.
The above theorem leads to the following notion, introduced in [4].

DEFINITION 1.2. A proper subdomain D in R? is said to have the
Hardy-Littlewood property of order o, o € (0, 1], if there exists a constant
¢ = ¢(D) such that whenever f is analytic in D with (1.4) for all z € D
and for some « € (0,1], then f € Lip,(D) with

cm
< 2=,

£ 1le <

Theorem 1.1 tells that each open disk has the Hardy-Littlewood prop-
erty of order « for all @ € (0,1]. In [4, Corollary 2.2] it is proved that
uniform domains have the same property. Also it is showed that there
exist domains having the Hardy-Littlewood property of order « without
being uniform [15].

We define the quasihyperbolic metric kp in a domain D C R™ by

ds
k =inf | ————,
pl@,e2) = i /., dist(z, 0D)
where the infimum is taken over all rectifiable arcs «y joining z; to z2 in
D.
Furthermore, we define the distance function ép on a domain D C R’
by

(67

6p(z1,22) = sup [f(z1) — f(22)],
where the supremum is taken over all analytic functions f on D satisfying
|f'(2)| < dist(z,0D)?
for all z € D.

Now let us recall a relation of the distance functions kp and ép on a
domain D.
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LEMMA 1.3. [12, Theorem 1][14, Lemma 4.1] In a conformal disk
D c R?,
6p(z1,22) < kp(21,22) < cobp(21, 22)

for all z1, 22 € D, where cq is an absolute constant.

In Section 2 we give Theorem 2.1 which characterizes uniformly John
domains in terms of the inner diameter metric and the quasihyperbolic
metric. In Section 3 we give two applications of Theorem 2.1 which are
analogues of the Hardy-Littlewood Property for a = 0 in uniformly John
domains in R™*,n > 2.

Results in this paper, [9], [10] and [11] show that a uniformly John
domain is a domain intermediate between a uniform domain and a John
domain.

2. Quasihyperbolic metric in uniformly John domains

In [6], Gehring and Osgood essentially showed (up to an additive
constant) that a domain D C R™ is uniform if and only if it satisfies

kp(z1,z2) < cjp(T1,z2)

for all 1,22 € D and some constant ¢, where

) 1 |1 — 2] |1 — zo
= Zlog AT g ) (BT L),
ip(z1,@2) = 3 log (dist(wl,aD) + ) <dist(m2,8D) +
We define a similar metric 57, by

x 1 pp(z1,2) pp(21,Z2)
ip(z1522) = 5 log (dist(zl,BD) U\ Gsten,op) T

We find that kp and j}, are related in uniformly John domains.

THEOREM 2.1. Suppose that D is a proper subdomain in R™. Then
D is a b-uniformly John domain if and only if there exists a constant c
such that

(2.1) kp(z1,22) < cjp(z1, 72)

for all 1,22 € D, where b and ¢ depend only on each other.

To prove Theorem 2.1 we need two lemmas.
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LeEMMA 2.2. [11, Lemma 4.3] For any ¢ > 1 and = > 0,

log(cz + 1) < clog(x + 1).
LEMMA 2.3. [7, Lemma 2.1

< kp(z1,z2).

Io dist(z1,0D)
& dist(z2, OD)

The proof of Theorem 2.1 is similar to that of Theorem 1 and Theorem
2 in [6].

Proof of necessity of Theorem 2.1. Suppose that D is a b-uniformly
John domain. Then by definition there exists a constant & > 1 such
that each pair of points z;1, zo € D can be joined by an arc v C D
which satisfies (1.1) and (1.2). Choose zg € 7 so that £(y(zg,x1)) =
2(y(zg,z2)). Then by the triangle inequality it is sufficient to show that

PD(wlyxZ)
. : < —_— T
(2.2) kp(zj,z0) < clog (dist(:cj,aD) —+ 1)

for j = 1,2, where ¢ = 2b(2b + 1). By symmetry we may assume that
j=1
Suppose first that

b

(2.3 (e, z0) < 5

dist(xl,BD).

Then zg € B (ml, ;j’_—l dist(z1, 6D)). If x € [x1,z0], then

1
b+1

dist(z, 0D) > dist(z1,0D) — |z1 — z| > dist(z1,0D)

and hence by (1.1)

|z1 — x| + dist(z1,0D) < £(y(z1,z)) + (b+ 1) dist(z, D)
(2.4) < bdist(x,0D) + (b + 1) dist(z, 0D)
= (2b+ 1) dist(z, D).
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Thus by (1.2), (2.4) and Lemma 2.2

ler—zo|
kD(Sﬂl,CEo)S/ ds ; / 2b+1

- < d
[w1,1:0] diSt(:Ij, aD - S+ diSt(.’El, 3D) 5

< (2b+1)log (——distfag?,)BD) + 1)

< (2b+ 1)blog (% + 1) :

This implies (2.2).
Next suppose that (2.3) does not hold and choose y; € y(z1,20) so
that

b
£(y(z1, 1)) = . dist(z1,0D).

If z € y(y1,x0), then by (1.1)

dist(z,dD) > 1(( (z1,2))

and hence again by (1.2) and Lemma 2.2

ds
kp(y1,zo S/ —_—
) +(y1,30) dist(z, dD)

(=l

ds
= b /y(yl,xo) E(’Y(xlﬁ yl)) + f(’)’(yl, x))

£(v(y1,%0)) ds
_p /
0 b+1 dlSt((L’l, OD) + s

b+1 £(v(z1,z0))
<bl
- og( b dist 3:1,6D )

S(b-l—l)log(d st(n BD +1>

< (b+1)blog (d”’igi’gg) + 1)

We also have

, T
kp(z1,y1) < (2b+ 1)blog (5[121%521;—) * 1>

by what was proved above. Then (2.2) follows from the triangle inequal-
ity. O
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Proof of sufficiency of Theorem 2.1. Suppose that (2.1) holds. Fix

z1,Z2 € D and let v be the quasihyperbolic geodesic joining z;,zs in

D. We may assume that dist(z1,0D) > dist(z2,0D). We want to show
that (1.1) and (1.2). Set

r = min{sup dist(z,0D), 2pp(x1,22)}.
ey

We shall consider the cases where

r < dist(z1,0D)
and where
(2.5) r > dist(zy,0D)

separately.
Suppose first that r < dist(z1,0D). Then r = 2pp(z;,x2) and

1
lzy — x2| < 3 dist(zy,0D) < dist(z,dD)
for all z on the segment 3 joining x; and z2. Thus
_ 1
2o €B (ml, 3 dlst(ml,BD)) cD

and hence pp(z1,22) = |T1 — 22| and § C D, and therefore

ds 2|z — x2]
y < <1
plm, o) < /ﬁ dist(z, D) ~ dist(z1,0D) ~

Since kp(z,x1) < kp(z1,x2) for € v, Lemma 2.3 yields the estimate
e~ !dist(zy,0D) < dist(x,dD) < edist(x;, D)

for each z € . These inequalities imply that

dist(z,,0D) .
< —_—_— o
() < /A/e dist(z, 5D) ds = edist(z1,0D)kp(z1, z2)

2z —
[21 xz,)S%pD(l’l,wz)

< edist(z, 6D)m
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and that for each =z € v

(y(z1,2)) < U(vy) < edist(z1,0D)kp(z1,T2)
< edist(z;,8D) < €2 dist(z, dD)

and hence (1.1) and (1.2) are obtained. -
Suppose next that (2.5) holds. By compactness there exists a point
To € v with
r < sup dist(z, dD) = dist(xzg, D).
. TEY

Next for j = 1,2 let m; denote the largest integer for which
2™ dist(z;,0D) <,
and let y; be the first point of v(z;, zo) with
dist(y;, 0D) = 2™ dist(z;,0D)
as we traverse v from x; towards xo. Obviously
(2.6) dist(y;,0D) < r < 2dist(y;, D).
We first show that for j = 1,2

@1) £(y(zj,y;)) < b dist(y;, OD),
. Uy(zj,z)) < vet dist(z, dD) for z € v(x;,y;).

Clearly we need only consider the case where j = 1 and my > 1. For
this choose points 21, ... , zm,+1 € Y(Z1,y1) so that z; = z; and so that
zj is the first point of y(z1,y1) for which

(2.8) dist(z;,0D) = 29~ dist(x;,0D)
as we traverse <y from z; towards y;. Then»zmﬁ_l =y;. Fix j and set

¢ = €(v(25, 241))
diSt(Zj, 8D) '

If z € v(25,2541), then

dist(z, 8D) < dist(z;41,0D) = 2dist(z;, 0D),
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and hence .
s
= /7]. Gst(z.0D) ~ 2kp(z 2zi41);

where v; = (25, 2j+1), since « is a quasihyperbolic geodesic. Now
" pp (25, Zj+1)
L 2:41) < 2log [ PREDZIHY) 4 1) < 91og(t + 1),

whence (2.1) implies that

< kp(2j,2541) < ¢jp(25, 2j4+1)

W | e

< 2clog(t + 1) < 2¢(t + 1)%,

since logz < x% for z > 0.
If t > 1, we see from above inequalities that

[0

t < 2kp (2, 2541) < et +1)7 < 4c(28)

and hence

(2.9) t<32c2 =V,

Thus

(2.10) kp(2;,241) < 2c(26)3 < V.

If t < 1, then ¢t < b’ and again we have (2.10). Next if € v(z;, zj+1),
then from Lemma 2.3

diSt(Zj+1, 8D)

0 <log =5tz o)

< kp(,2j41) < kp(2,2541),
and with (2.9) and (2.10) we conclude that

2.11) £(y(2, zj4+1)) < V' dist(z;,0D),
' dist(zj41,0D) < e dist(z, D) for z € v(24, 2j41),

fOI'jzl,... , M.
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Hence

tr(en i) = vz zan)) < ¥'S dist(z;, 0D)

j=1 j=1
= b/(2m1 - 1) diSt((El, BD) <b diSt(yl, aD)

by (2.8) and (2.11). This proves the first inequality in (2.7). Next if
z € y(x1,%1), then « € ¥(z;, zj41) for some j and

Ly(z1,2)) =D £(v(2i,2i41)) <Y dist(z;, D)

i=1 i=1
< b dist(z;41,0D) < b'e¥ dist(x, D)

again by (2.8) and (2.11). This completes the proof of (2.7).
We show next that if dist(y1,0D) < dist(ya, D), then

{ 2(y(y1,y2)) < b'e® dist(ys, D),

(2.12) )
dist(yq, 8D) < € dist(z, D) for x € y(y1,y2).

Obviously we may assume that y; # yo since otherwise there is nothing
to prove.
Suppose first that

r = sup dist(z, dD)
TEY

and set
_ t0(y1,12))
diSt(yl, 8D) ’

If x € v(1, y2), then
dist(z, 0D) < r < 2dist(y1,0D),

by (2.6) and we can repeat the proof of (2.11), with 2, replaced by y;
and z;41 by y2, to obtain (2.12).
Suppose next that
r = 2pp(z1,T2).

Then the triangle inequality, (2.6) and (2.7) imply that

po(y1,y2) < L(v(x1,11)) + £(v(22,42)) + pp (21, Z2)
< ¥ dist(y1, dD) + b’ dist(yo, dD) + g
< 4V dist(yy, D).
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Therefore

2
PD(ylay2)) + 1) - 210g(4b' +1) <2log 174

i <1 —_—
]D(ylay2) = Og (dist(yl,aD

e kp(y1,y2) < cib(y1,y2) < clog(5b) < 2¢(56)% < ¥/
by (2.1). If z € y(y1,y2), then by Lemma 2.3
e dist(yz,0D) < dist(z,0D) < e dist(y1,0D)
and from this
£(v(y1,y2)) < € dist(y1, 8D)kp (31, y2) < Ve dist(y1, D)

and again we obtain (2.12).
We now complete the proof of Theorem 2.1 as follows. By relabelling
we may assume that dist(y1,0D) < dist(y2,0D). Then
€(y) = £(v(z1,31)) + £(v(m2,¥2)) + £(v(y1,92))

< 4b'e” dist(yz, 8D)

< 4be?'r < 8b'62blpD(x1, z2)
by (2.6), (2.7) and (2.12). This establishes (1.2). Next if € =, then
either = € vy(z;,y;) and

min #((z;,2)) < £(y(z;,z)) < b'e” dist(z,0D)
=1,

by (2.7), or = € ¥(y1,y2) and
min £(y(z;,1)) < %2(7) < be” dist(ys, AD) < He? dist(z, D)
J=1,

by (2.12). In each case we obtain (1.1) and the proof is complete. [

REMARK 2.4. Theorem 4.1 and Remark 4.14 in [11] show that a
proper subdomain D C R? is b-John disk if and only if for some constant
c>0

(2.13) kp(z1,22) < cjip(z1,22)

for all z;,2z2 € D, where b and ¢ depend only on each other. Here
j;)(xl,a:g) is a metric obtained by replacing pp(z1,z2) in jj(z1,x2)
with Ap(z1,z2). But Theorem 3.6 in [13] shows that for n > 2, D C R"
is a b-John domain if (2.13) holds.
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3. Analogues of the Hardy-Littlewood property for a =0 in
uniformly John domains

In this section we give two applications of Theorem 2.1 which are
analogues of the Hardy-Littlewood Property for ¢ = 0 in uniformly
John domains in R, n > 2.

In [9] we have an analogue of the Hardy-Littlewood Property of order
a € (0,1] for uniformly John domains in R? as follows.

LEMMA 3.1. [9] If a proper subdomain D in R? is a b-uniformly John
domain and if f is analytic and satisfies

|f'(2)] < mdist(z,0D)>*

for all z in D and for some « € (0,1], then
: cm
|[f(21) = f(z2)l < —=pp (21, 2)°

for all z; and z in D, where ¢ = c(b).
Now we examine the case o = 0.

THEOREM 3.2. A conformal disk D C R? is a b-uniformly John do-
main if and only if every analytic function f in D satisfying

(3.1) |f'(2)| < dist(z,0D)*

for all z in D satisfies

(32)  |f(z) = f(z2)| < clog (1 4 pp(z1, 22) )

minj— o dist(z;,0D)
for all z; and zz in D. Here b and ¢ depend only on each other.

Proof. First suppose that D is a b-uniformly John domain. Then by
Theorem 2.1, '

pp(21, 22) )

<alog|(1
kp(z1,22) < alog ( + minj— 2 dist(z;,0D)

for all z; and 22 in D, where a depends only on b. If f is analytic and
satisfies (3.1) in D, then

pp(21, 22) )

— < <
If(zl) f(22)l - kD(21’ 22) - alog (1 + minj=1,2 diSt(Zj,aD)
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as desired.
Now suppose that every f analytic and satisfying (3.1) in D also
satisfies (3.2). By Lemma 1.3,

pp(21, 22) >

minj=1,2 diSt(Zj, 8D)
for all z; and 23 in D. Thus by Theorem 2.1, D is a b-uniformly John
domain. O

kp(z1,22) < cobp(21,22) < cpalog (1 +

REMARK 3.3. For a b-uniform domain and a b-John disk, we need to
replace pp(z1, 22) in (3.2) by |21 — 22| and Ap(z1, 22), respectively [14].

By Theorem 1.1 and elementary calculus we know that for functions
analytic in a domain D C R? and for 0 < a < 1, f € locLipn(D) is
equivalent to the bound on the derivative

|f'(2)] < mdist(z,0D)>!
in D.
For higher dimensions Gehring and Martio show the following.
LeMMA 3.4. [5,2.13 Theorem| Suppose that D is a domain in R"

and that 0 < @ < 1. Then f : D — RP belongs to locLip,(D) if and
only if there are constants m < oo and 0 < ¢ < 1 such that

[f(z1) = f(z2)] < ml|z1 — 22|*
whenever |z, — x| < cdist(zq,0D).

Then Gehring and Martio extend the Hardy-Littlewood property to
higher dimensions by using the concept of locLip,(D) and show that
uniform domains in R™, n > 2 are Lip,-extension domain for all 0 <
a <1 5]

Now we examine the case of uniformly John domains in R", n > 2
with a = 0 and obtain a higher dimensional version of Theorem 3.2.

THEOREM 3.5. A domain D C R" is a b-uniformly John domain if
and only if every function f in D satisfying

|1 — 2]
(3.3) [f(z1) — f(z2)] < mlog (1 * min;j_; 2 diSt(CUj’BD)>

for all z1 and x2 in D with |z1 — x2| < dist(z1,0D) satisfies

pD(xh IQ)
(3.4) |f(z1) — f(x2)| < mclog (1 * miny_1. dist(zy, aD))

for all xz1 and z5 in D. Here b, ¢ and m depend only on each other.




408 Kiwon Kim

Proof. Suppose that D C R" is a b-uniformly John domain. Then by
Theorem 2.1,

kp(z1,22) < alog (1 + pp(T1,Z2) )

minjzl,z diSt(ZBj, 6D)

for all z; and x5 in D. Let f satisfy (3.3). Fix 21, z2 € D andlet v C D
be the quasihyperbolic geodesic with endpoints z; and z5. Let v(s) be
the parameterization of v with respect to arc length measured from z;,
¢ ={(v). Let y; = x1. We choose positive numbers r; and ¢;, and points
y; € vy as follows:

1 . w®
=3 dist(y1,0D), €1 = max{s : v(s) € B (y1,71)}, 32 = v(f1);

1 =n
ry = 3 dist(y2,8D), € = max{s: y(s) € B (ya2,72)},ys = v(£2);

and so on. After a finite number of steps, N, say, {5 = £ and the process
stops. Let yn41 = x2. So by [3, Lemma 2.6], we have

N
) m M)
£ (z1) = f(=z2)] < g log (1 st (yir1, 0D)

N
<mYy_ kp(v(yi yir1))
=1

po(z1, z2) )

min;—1 5 dist(z;,0D)

< malog (1 +

as desired.
Now suppose (3.3) implies (3.4) in D. Fix o € D. Let

f(l') = kD(.’L‘,"L‘O).
If z1, 220 € B C D, B an open ball, then
|f(z1) — f(x2)| < kp(z1, 22).

Let v C B be the segment of the circle through x;, 2 perpendicular to
OB with endpoints z1, 2. Then

£(y) < 7lzy —
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and
] i1n2€('y(:cj,:v)) < 7 dist(z,0B) < 7 dist(z,0D)
j=1,

for all z € +. Following the same argument used in the proof of [11,
Theorem 4.1] we get

ds |21 — o
plen,22) < [y dist(z,0D) = " ( " min— dist(z;,0D) )

where m is independent of zo and B, i.e., (3.3) holds. So

pp (%, Zo)
min{ dist(z, 8D), dist(zo, D)}

kp(z,zo) < emlog (1 +

for all x € D, where em is independent of xg. Thus

pp (71, T2) )

minjzl,z dist (a:j s 8D)

kp(zy,z2) < emlog (1 +

for all z1 and x5 in D, and hence D is a uniformly John domain by
Theorem 2.1. O

REMARK 3.6. For a uniform domain D C R"”, we need to replace
pp(z1, T2) in (3.4) by |z1 — x2| [14]. Also a domain D C R™ is a
b-John domain if (3.3) implies (3.4) obtained by replacing pp(z1, z2)
with Ap(z1,z2) [13].
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