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COLLAR LEMMA IN QUATERNIONIC
HYPERBOLIC MANIFOLD

DAEYoNG Kim

ABSTRACT. In this paper, we show that a short simple closed geo-
desic in quaternionic hyperbolic 2-manifold has an embedded tubu-
lar neighborhood whose width only depends on the length of the
geodesic.

1. Introduction

The motivation of this work comes from the open question of S.
Markham and J. R. Parker on collar lemma, in quaternionic hyperbolic
space. In [6], S. Markham and J. R. Parker showed that if a simple
closed geodesic in a quaternionic hyperbolic 2-manifold is sufficiently
short, it has an embedded tubular neighborhood. It is almost obtained
by following word by word the proof of complex hyperbolic space case
([6]). And essential technique of the proof of complex hyperbolic space
case comes from Zagier’s inequality ([7]). However it is not sufficient
with only Zagier’s inequality to get the relation of the width of an em-
bedded tubular neighborhood and the length of a simple closed geodesic
with it as an embedded tubular neighborhood, and so they left this as
an open question in [6]. Thus in this paper, as an application of the
quaternionic hyperbolic Jorgensen’s inequality ([4]), we show that if a
simple closed geodesic in a quaternionic hyperbolic 2-manifold is suffi-
ciently short, then there exists an embedded tubular neighborhood of
this geodesic, called a collar, whose width only depends on the length
of the closed geodesic. To do this, we get hint from Meyerhoff’s original
idea ([7]) and apply the technique of the proof of complex hyperbolic
space case used in [6].
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2. Preliminary

Quaternionic hyperbolic 2-space, HI%I is a rank one symmetric space
of non-compact type and can be defined as the set of negative (quater-
nionic) lines in a 3-dimensional (so real 12-dimensional) quaternionic
vector space

H>! = {(q1 g2 ¢3)'| @ € H,i =1,2,3}
0 01
with the Epstein’s second Hermitian form J = [0 1 0| of signature
100
(2,1). And quaternionic hyperbolic 2-space has a useful model, called
Siegel domain model,

S = {(a1,q2) € H? | |¢1|* + 2R(g2) < 0}
= { (g2, q1,1) € PH?! | |g1]2 + 2R(q2) < 0}

which can be considered as a generalization of upper half space model
of real hyperbolic space. By using Siegel domain model, we can give
horospherical coordinate to each point of H]%I associated a point in H x
SH x Rt as follows ;

H x SH x RT > S
¢ [P —u+w g2 ”
v — V(¢ =|a @CZT,
U 1 1 2

v = 3(ga).

Similarly, we can identify 86 with H x SH U {oo} as follows ;
HxSHU{w} > 86

v

|2 +v q2
(C> - V2¢ =lg|ec=% v =3(g2)
1
1
0
0

This identification gives homeomorphism between H%I and {q € PH?! :
{(q,q) < 0}, and this homeomorphism defines Bergman metric p on H%
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as follows ([1]) :
o(P2, Pw)\ _ (z,w)(w,2)
cosh2< > ) =

where P is a right projection map by third coordinate, i.e.,
1

(z,z) (W, w)’

21 Z123

S —1
Piz=|2]|— 2923
z3 1

The isometry group of H]%I with respect to the Bergman metric is the
non-compact Lie group

PSp(2,1) = {[A] : A € GL(3,H), (q,q) = (Aq, Ad), q,q' € H>'}
={[A4]: A € GL(3,H),J = A*JA}
={[A] : A € Sp(2,1)},
where [A] : PH? — PH?; zH + (Az)H for A € Sp(2,1),z € H>! and
A* is the quaternionic Hermitian transpose of A. Thus PSp(2,1) =

Sp(2,1)/ £ I since for A € PSp(2,1), | det A| = 1. The matrix forms of
loxodromic elements fixing 0 and co among elements of PSp(2,1) are

M 0 0

0 wr O
u ?

0 o X

where A € R*, u,v € Sp(1) ([5]). To prove collar lemma, the discrete-
ness condition related to loxodromic elements of PSp(2,1) is necessary.
Recently the following theorem related to this condition was proved ([3]).

THEOREM 2.1. Let A be a loxodromic element of PSp(2,1) fixing p
and q and let B be any element of PSp(2,1). If

M(I[B(p),q,p,B(q)]|%+1) <1 orM<|[B(p),p,q,3(q)]|%+1> <1,

where M = |Ap — 1] + 2|v — 1] + ’-’; — 1|, then the group (A, B) is

elementary or not discrete.

For a discrete subgroup I' of PSp(2,1) and a loxodromic element A
of I with axis v which is a geodesic, let T,.(7y) be the tube of radius r
about v and C, = T,(y)/(A) be the collar of width r about v = v/(A)
which is a simple closed geodesic in HZ/T. Then by using the above
theorem, there exists an embedded collar of the simple closed geodesic
in HZ /T by the following theorem ([6]).
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THEOREM 2.2. Let I" be a discrete, non-elementary and torsion-free

Au 0O

subgroup of PSp(2,1). Let A= | 0 v 2 be a loxodromic element
0 0 X

of I' with axis v, where A\ > 1,u,v € Sp(l). Put M = |Ap — 1| +
1

2lv — 1} + £)f_ — 1| and suppose that M < 3" Let r > 0 be defined by

1
cosh(r) +1 = U Then T,(v) is precisely invariant under T'.

COROLLARY 2.3. Let I', A and v be as in Theorem. Then in H/T,
the simple closed geodesic ' = «/(A) has an embedded collar C.(') of
width .

The proof of Theorem 2.2 is essentially obtained by following step by
step the proof of complex hyperbolic space case.

3. Main theorem

Now we show that if a simple closed geodesic in a quaternionic hy-
perbolic 2-manifold is sufficiently short, then there exists an embedded
tubular neighborhood of this geodesic, called a collar, whose width only
depends on the length of the closed geodesic in spite of the complexity of
constant M appearing in quaternionic hyperbolic Jorgensen inequality
comparing with the one of complex hyperbolic space. We state main
theorem. ' :

THEOREM 3.1. Let I" be a discrete, non-elementary and torsion-free

Ap 000

subgroup of PSp(2,1). Let A = 0 v 2 be a loxodromic element
' 0 0 =
A

of I with axis v where A\ = ez > 1,u,v € Sp(l). There exists an
increasing smooth function k defined for | satisfying

(-Ar 3 An 3 1
\/(cosh “W—\};I)ZWLl)(cosh 4—7r(—’°1\’/);—1)l—1+¥)+2sin%l—)§1
and }m% k0 = 0 such that if r > 0 is defined by cosh(r) + 1 =

1

an(Fs+1)31 an (& +1)31 (L R
2(\J (cosh J\%—-&-l) (cosh ——I\/SL—I+—£—2)+25111—-£—2

H
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then T,(v) is precisely invariant under I'. And in this case, 1 — o0 as
[ —0.

Proof. Let p = el® := cosa+Isina, v = e’8 := cos f+J sin 3, where

_ S _ W) iy g = SO _ SW)
coser = R0 = 500y = a8 = B = G ~
Then

— w1+ 5 1]+ 2y

|e2e -1+ |e‘§eI°‘ 1] +2/|e’? - 1)

l { . B
= 2\/(cosh 5 + 1) (cosh 3~ cos a) + 4|sm 5‘

Here we use the following two facts originated from Zagier and Meyerhoff
respectively.

PROPOSITION. [Zagier’s inequality] ([7]) For all 0 < | < 2m/3 and
0 < 0 < 27, there exists n € N such that

nl 2ml
cosh(—) — ¢ f) <coshyf—= —1.
05(2) os(nf) < cos ’/\/'3]

PROPOSITION. [Pigeonhole Principle] ([7]) For all 0 < < 27 and
N € N, there exists n < N and ' < N such that

cos(nf) > cos(%r) and sin(n'f) < sin(%r).

3

First of all, consider a function k(I) satisfying llirré k_(l)_ = 0. Then
by the pigeonhole principle, there exists an integer my, such that 1 <

_})2>, where [z] is called

my < z([:(_’;)]f and cosmma > (m_

15 =

—~

the ceiling of z, denoting the least integer > z (e.g., [%1 =n4+1if
and only if
s 4 27 k() 2r
— < 1< —=+1 — <=L < — ).
k(l)—n+ <k(l)+ @n+1_ 5 <n)
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4
And there exists an integer m, such that 1 <m, < [—7;)] and

k(

sin(m”;n—“ﬁ) < sin([j(l)o <s n——é—l .

Thus we have

and for [ satisfying

47 3
* 2 —+1 <2
(*) (MO+ )z_7m6,
by Zagier’s inequality, there exists ng € N such that
‘ 2 {
cosh(wg—m“{z) — cosng(m,mya) < cosh L(%m”—) - 1.
Now denote the corresponding M for A by M, m, for A™*™«. Then

My,

= 2\/(cosh mertul 1 1) (cosh ™4t — cosmymye) + 4[sin Pl |

+4Is1nw|

(U5 = ])2 2

< 2\/(cosh w + 1) (cosh no(mymul) _ o0 —’T;’—"L-) + 4sin k(l)

; T
< 2 cosn /D 11

7 (mymyl)
X \/(cosh —\/5—’1— (14 cos ~Z— ([7_])2

2rm,myl mmymyl I—ki("lr—)-l"r - k()
< 2\/(cosh —\/g-‘i— + 1)(cosh‘/—\/_3—-”— 1+ W) + 4sin =

AT 70,41
< 2\/(00sh\/? fkaﬂj?:(fwﬂ)zl 1)

o [4T 7.9, 2
% \/(Cosh\/ fk(t)]j_(fk(z)]) l 14 rr_]) 1 4sin (l)

k(1)

< 2\/(cosh %"—l + 1) (cosh L _ cos

— cosng(m,mya))+4sin @
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([ 35 )% an([ D3 . k(l
= 2\/(cosh —ﬂ\/—%— + 1) (cosh ——'5\/(—5; -1+ f—f%T) +4s1n¥

3
dr(20-41)31 [ 4m (A 41)31 .k
0) &(1) _ T k(1)
< 2\/(cosh 73 + 1) (cosh — 1+ %) + 4 sin =
«
4

(AT 41)3] Ar( A7 11)3]

V3 V3
1
< -,
S35 )
In particular, we have used 1 < m, < [—k—(%-‘ in third line and mean
3 3
value theorem in seventh ¥ine. Now since }I—I»% k_(5 =0, }1_{1(1) <W7;)+1) l=

0 and so for sufficiently small {,

An_ 3 ' Arn_ 3
(cosh w + 1) (cosh w —14+ _’E@)
(%% V3 V3 4

k() 1

SV gl
+ 2sin 5 <7
is satisfied and for such [, (%) is also satisfied. Thus if we define & for [
satisfying (**) and apply Theorem 2.2. with A replaced by A™ ™, we
obtain the result of this theorem. |

COROLLARY 3.2. Let v/ be a simple closed geodesic of length | in a
quaternionic hyperbolic 2-manifold. There exists an increasing smooth
function k defined for [ satisfying

it 4T
\/(cosh 4—77—(&?/5&12?—+—1)(cosh %\/g—l—)s—l*l+@)+2sin@§}l
and lim i/_l— = 0 such that if r > 0 is defined by
10 k(1)
cosh(r)+1= L ;

. 4 3 - 47 3
2 <\J (cosh \/ﬂg—gtz—l+l) (cosh \/“ﬂf/;—l!—bl-%ﬂ)-!-Zsin @)
then v has an embedded collar Cr(v') of width r.

3
EXAMPLE. Define a function k as k(I) = ¥/I. Then clearly }iné e

(0)
0 and for 0 < I < 1.103320907 x 10710, (**) is satisfied.
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