COLLAR LEMMA IN QUATERNIONIC HYPERBOLIC MANIFOLD

DAEYONG KIM

ABSTRACT. In this paper, we show that a short simple closed geodesic in quaternionic hyperbolic 2-manifold has an embedded tubular neighborhood whose width only depends on the length of the geodesic.

1. Introduction

The motivation of this work comes from the open question of S. Markham and J. R. Parker on collar lemma in quaternionic hyperbolic space. In [6], S. Markham and J. R. Parker showed that if a simple closed geodesic in a quaternionic hyperbolic 2-manifold is sufficiently short, it has an embedded tubular neighborhood. It is almost obtained by following word by word the proof of complex hyperbolic space case ([6]). And essential technique of the proof of complex hyperbolic space case comes from Zagier's inequality ([7]). However it is not sufficient with only Zagier's inequality to get the relation of the width of an embedded tubular neighborhood and the length of a simple closed geodesic with it as an embedded tubular neighborhood, and so they left this as an open question in [6]. Thus in this paper, as an application of the quaternionic hyperbolic Jörgensen's inequality ([4]), we show that if a simple closed geodesic in a quaternionic hyperbolic 2-manifold is sufficiently short, then there exists an embedded tubular neighborhood of this geodesic, called a *collar*, whose width only depends on the length of the closed geodesic. To do this, we get hint from Meyerhoff's original idea ([7]) and apply the technique of the proof of complex hyperbolic space case used in [6].

Received April 4, 2005.

²⁰⁰⁰ Mathematics Subject Classification: Primary 51M10, 57S30.

Key words and phrases: collar, quaternionic hyperbolic, tubular neighborhood.

This work was supported by the Brain Korea 21 project in 2005.

2. Preliminary

Quaternionic hyperbolic 2-space, $\mathbf{H}_{\mathbb{H}}^2$ is a rank one symmetric space of non-compact type and can be defined as the set of negative (quaternionic) lines in a 3-dimensional (so real 12-dimensional) quaternionic vector space

$$\mathbb{H}^{2,1} = \{ (q_1 \ q_2 \ q_3)^t | \ q_i \in \mathbb{H}, i = 1, 2, 3 \}$$

with the Epstein's second Hermitian form $J=\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ of signature

(2,1). And quaternionic hyperbolic 2-space has a useful model, called Siegel domain model,

$$\mathfrak{S} = \{ (q_1, q_2) \in \mathbb{H}^2 \mid |q_1|^2 + 2\Re(q_2) < 0 \}$$

$$\equiv \{ (q_2, q_1, 1) \in \mathbb{PH}^{2,1} \mid |q_1|^2 + 2\Re(q_2) < 0 \}$$

which can be considered as a generalization of upper half space model of real hyperbolic space. By using *Siegel domain model*, we can give horospherical coordinate to each point of $\mathbf{H}^2_{\mathbb{H}}$ associated a point in $\mathbb{H} \times \mathfrak{TH} \times \mathbb{R}^+$ as follows;

$$\mathbb{H} \times \Im \mathbb{H} \times \mathbb{R}^{+} \stackrel{\cong}{\to} \qquad \mathfrak{S}$$

$$\begin{pmatrix} \zeta \\ v \\ u \end{pmatrix} \mapsto \begin{pmatrix} -|\zeta|^{2} - u + v \\ \sqrt{2}\zeta \\ 1 \end{pmatrix} = \begin{pmatrix} q_{2} \\ q_{1} \\ 1 \end{pmatrix} \Leftrightarrow \zeta = \frac{q_{1}}{\sqrt{2}},$$

$$u = -\Re(q_{2}) - \frac{|q_{1}|^{2}}{2},$$

$$v = \Im(q_{2}).$$

Similarly, we can identify $\partial \mathfrak{S}$ with $\mathbb{H} \times \mathfrak{IH} \cup \{\infty\}$ as follows ;

$$\mathbb{H} \times \Im \mathbb{H} \cup \{\infty\} \xrightarrow{\cong} \partial \mathfrak{S}$$

$$\begin{pmatrix} \zeta \\ v \end{pmatrix} \mapsto \begin{pmatrix} -|\zeta|^2 + v \\ \sqrt{2}\zeta \\ 1 \end{pmatrix} = \begin{pmatrix} q_2 \\ q_1 \\ 1 \end{pmatrix} \Leftrightarrow \zeta = \frac{q_1}{\sqrt{2}}, \ v = \Im(q_2)$$

$$\infty \mapsto \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

This identification gives homeomorphism between $\overline{\mathbf{H}_{\mathbb{H}}^{2}}$ and $\{\mathbf{q} \in \mathbb{PH}^{2,1} : \langle \mathbf{q}, \mathbf{q} \rangle < 0\}$, and this homeomorphism defines Bergman metric ρ on $\mathbf{H}_{\mathbb{H}}^{2}$

as follows ([1]):

$$\cosh^2\!\left(\frac{\rho(P\mathbf{z},P\mathbf{w})}{2}\right) = \frac{\langle \mathbf{z},\mathbf{w}\rangle\langle \mathbf{w},\mathbf{z}\rangle}{\langle \mathbf{z},\mathbf{z}\rangle\langle \mathbf{w},\mathbf{w}\rangle},$$

where P is a right projection map by third coordinate, i.e.,

$$P: \mathbf{z} = \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} \mapsto \begin{pmatrix} z_1 z_3^{-1} \\ z_2 z_3^{-1} \\ 1 \end{pmatrix}.$$

The isometry group of $\mathbf{H}_{\mathbb{H}}^2$ with respect to the Bergman metric is the non-compact Lie group

$$PSp(2,1) = \{ [A] : A \in GL(3,\mathbb{H}), \langle \mathbf{q}, \mathbf{q}' \rangle = \langle A\mathbf{q}, A\mathbf{q}' \rangle, \ \mathbf{q}, \mathbf{q}' \in \mathbb{H}^{2,1} \}$$
$$= \{ [A] : A \in GL(3,\mathbb{H}), J = A^*JA \}$$
$$= \{ [A] : A \in Sp(2,1) \},$$

where $[A]: \mathbb{PH}^2 \to \mathbb{PH}^2; x\mathbb{H} \mapsto (Ax)\mathbb{H}$ for $A \in Sp(2,1), x \in \mathbb{H}^{2,1}$ and A^* is the quaternionic Hermitian transpose of A. Thus $PSp(2,1) = Sp(2,1)/\pm I$ since for $A \in PSp(2,1), |\det A| = 1$. The matrix forms of loxodromic elements fixing 0 and ∞ among elements of PSp(2,1) are

$$\begin{pmatrix} \lambda \mu & 0 & 0 \\ 0 & \mu \nu & 0 \\ 0 & 0 & \frac{\mu}{\lambda} \end{pmatrix},$$

where $\lambda \in \mathbb{R}^+$, $\mu, \nu \in Sp(1)$ ([5]). To prove collar lemma, the discreteness condition related to loxodromic elements of PSp(2,1) is necessary. Recently the following theorem related to this condition was proved ([3]).

THEOREM 2.1. Let A be a loxodromic element of PSp(2,1) fixing **p** and **q** and let B be any element of PSp(2,1). If

$$M\bigg(\big|[B(\mathbf{p}),\mathbf{q},\mathbf{p},B(\mathbf{q})]\big|^{\frac{1}{2}}+1\bigg)<1 \text{ or } M\bigg(\big|[B(\mathbf{p}),\mathbf{p},\mathbf{q},B(\mathbf{q})]\big|^{\frac{1}{2}}+1\bigg)<1,$$

where $M = |\lambda \mu - 1| + 2|\nu - 1| + \left|\frac{\mu}{\lambda} - 1\right|$, then the group $\langle A, B \rangle$ is elementary or not discrete.

For a discrete subgroup Γ of PSp(2,1) and a loxodromic element A of Γ with axis γ which is a geodesic, let $T_r(\gamma)$ be the tube of radius r about γ and $C_r = T_r(\gamma)/\langle A \rangle$ be the collar of width r about $\gamma' = \gamma/\langle A \rangle$ which is a simple closed geodesic in $\mathbf{H}^2_{\mathbb{H}}/\Gamma$. Then by using the above theorem, there exists an embedded collar of the simple closed geodesic in $\mathbf{H}^2_{\mathbb{H}}/\Gamma$ by the following theorem ([6]).

THEOREM 2.2. Let Γ be a discrete, non-elementary and torsion-free subgroup of PSp(2,1). Let $A=\begin{pmatrix} \lambda\mu & 0 & 0 \\ 0 & \nu & 0 \\ 0 & 0 & \frac{\mu}{\lambda} \end{pmatrix}$ be a loxodromic element of Γ with axis γ , where $\lambda>1, \mu, \nu\in Sp(1)$. Put $M=|\lambda\mu-1|+2|\nu-1|+\left|\frac{\mu}{\lambda}-1\right|$ and suppose that $M<\frac{1}{2}$. Let r>0 be defined by $\cosh(r)+1=\frac{1}{M}$. Then $T_r(\gamma)$ is precisely invariant under Γ .

COROLLARY 2.3. Let Γ , A and r be as in Theorem. Then in $\mathbf{H}_{\mathbb{H}}^2/\Gamma$, the simple closed geodesic $\gamma' = \gamma/\langle A \rangle$ has an embedded collar $C_r(\gamma')$ of width r.

The proof of Theorem 2.2 is essentially obtained by following step by step the proof of complex hyperbolic space case.

3. Main theorem

Now we show that if a simple closed geodesic in a quaternionic hyperbolic 2-manifold is sufficiently short, then there exists an embedded tubular neighborhood of this geodesic, called a collar, whose width only depends on the length of the closed geodesic in spite of the complexity of constant M appearing in quaternionic hyperbolic Jörgensen inequality comparing with the one of complex hyperbolic space. We state main theorem.

Theorem 3.1. Let Γ be a discrete, non-elementary and torsion-free

subgroup of
$$PSp(2,1)$$
. Let $A = \begin{pmatrix} \lambda \mu & 0 & 0 \\ 0 & \nu & 0 \\ 0 & 0 & \frac{\mu}{\lambda} \end{pmatrix}$ be a loxodromic element

of Γ with axis γ where $\lambda = e^{\frac{1}{2}} > 1, \mu, \nu \in Sp(1)$. There exists an increasing smooth function k defined for l satisfying

$$\sqrt{\left(\cosh\sqrt{\frac{4\pi(\frac{4\pi}{k(l)}+1)^3l}{\sqrt{3}}}+1\right)\left(\cosh\sqrt{\frac{4\pi(\frac{4\pi}{k(l)}+1)^3l}{\sqrt{3}}}-1+\frac{k(l)}{4}\right)+2\sin\frac{k(l)}{2}} \le \frac{1}{4}$$

and $\lim_{l\to 0} \frac{\sqrt[3]{l}}{k(l)} = 0$ such that if r > 0 is defined by $\cosh(r) + 1 = 1$

$$\frac{1}{2\left(\sqrt{\left(\cosh\sqrt{\frac{4\pi(\frac{4\pi}{k(l)}+1)^{3}l}{\sqrt{3}}}+1\right)\left(\cosh\sqrt{\frac{4\pi(\frac{4\pi}{k(l)}+1)^{3}l}{\sqrt{3}}}-1+\frac{k(l)}{4}\right)+2\sin\frac{k(l)}{2}\right)}},$$

then $T_r(\gamma)$ is precisely invariant under Γ . And in this case, $r \to \infty$ as $l \to 0$.

Proof. Let
$$\mu = e^{I\alpha} := \cos \alpha + I \sin \alpha, \nu = e^{J\beta} := \cos \beta + J \sin \beta$$
, where $\cos \alpha = \Re(\mu), I = \frac{\Im(\mu)}{|\Im(\mu)|} = \frac{\Im(\mu)}{|\sin \alpha|}, \cos \beta = \Re(\nu), J = \frac{\Im(\nu)}{|\Im(\nu)|} = \frac{\Im(\nu)}{|\sin \beta|}.$

Then

and only if

$$\begin{split} M &= |\lambda \mu - 1| + \left| \frac{\mu}{\lambda} - 1 \right| + 2|\nu - 1| \\ &= |e^{\frac{l}{2}}e^{I\alpha} - 1| + |e^{-\frac{l}{2}}e^{I\alpha} - 1| + 2|e^{J\beta} - 1| \\ &= 2\sqrt{\left(\cosh\frac{l}{2} + 1\right)\left(\cosh\frac{l}{2} - \cos\alpha\right) + 4\left|\sin\frac{\beta}{2}\right|}. \end{split}$$

Here we use the following two facts originated from Zagier and Meyerhoff respectively.

PROPOSITION. [Zagier's inequality] ([7]) For all $0 < l < 2\pi\sqrt{3}$ and $0 \le \theta < 2\pi$, there exists $n \in \mathbb{N}$ such that

$$\cosh(\frac{nl}{2}) - \cos(n\theta) \le \cosh\sqrt{\frac{2\pi l}{\sqrt{3}}} - 1.$$

PROPOSITION. [Pigeonhole Principle] ([7]) For all $0 \le \theta < 2\pi$ and $N \in \mathbb{N}$, there exists $n \le N$ and $n' \le N$ such that

$$\cos(n\theta) \ge \cos(\frac{2\pi}{N})$$
 and $\sin(n'\theta) \le \sin(\frac{2\pi}{N})$.

First of all, consider a function k(l) satisfying $\lim_{l\to 0} \frac{\sqrt[3]{l}}{k(l)} = 0$. Then by the pigeonhole principle, there exists an integer m_{μ} such that $1 \le m_{\mu} \le 2\left(\left\lceil\frac{4\pi}{k(l)}\right\rceil\right)^2$ and $\cos m_{\mu}\alpha \ge \cos\left(\frac{\pi}{\left(\left\lceil\frac{4\pi}{k(l)}\right\rceil\right)^2}\right)$, where $\lceil x \rceil$ is called the ceiling of x, denoting the least integer $\ge x$ (e.g., $\left\lceil\frac{4\pi}{k(l)}\right\rceil = n+1$ if

$$\frac{4\pi}{k(l)} \le n + 1 < \frac{4\pi}{k(l)} + 1 \iff \frac{2\pi}{n+1} \le \frac{k(l)}{2} < \frac{2\pi}{n} \).$$

And there exists an integer m_{ν} such that $1 \leq m_{\nu} \leq \lceil \frac{4\pi}{k(l)} \rceil$ and

$$\sin(\frac{m_{\nu}m_{\mu}\beta}{2}) \leq \sin\left(\frac{2\pi}{\left\lceil\frac{4\pi}{k(l)}\right\rceil}\right) \leq \sin\frac{k(l)}{2}.$$

Thus we have

$$m_{
u}m_{\mu}l \leq 2\left(\left\lceil rac{4\pi}{k(l)}
ight
ceil^3 l$$

$$< 2\left(rac{4\pi}{k(l)} + 1
ight)^3 l \leq 2\pi\sqrt{3}$$

and for l satisfying

$$2\left(\frac{4\pi}{k(l)}+1\right)^3l \le 2\pi\sqrt{3}\,,$$

by Zagier's inequality, there exists $n_0 \in \mathbb{N}$ such that

$$\cosh\left(\frac{n_0(m_\nu m_\mu l)}{2}\right) - \cos n_0(m_\nu m_\mu \alpha) \le \cosh\sqrt{\frac{2\pi(m_\nu m_\mu l)}{\sqrt{3}}} - 1.$$

Now denote the corresponding M for A by $M_{m_{\nu}m_{\mu}}$ for $A^{m_{\nu}m_{\mu}}$. Then

$$\begin{split} & = 2\sqrt{\left(\cosh\frac{m_{\nu}m_{\mu}l}{2} + 1\right)\left(\cosh\frac{m_{\nu}m_{\mu}l}{2} - \cos m_{\nu}m_{\mu}\alpha\right)} + 4\left|\sin\frac{m_{\nu}m_{\mu}\beta}{2}\right| \\ & \leq 2\sqrt{\left(\cosh\frac{m_{\nu}m_{\mu}l}{2} + 1\right)\left(\cosh\frac{m_{\nu}m_{\mu}l}{2} - \cos\frac{m_{\nu}\pi}{(\lceil\frac{4\pi}{k(l)}\rceil)^{2}}\right) + 4\left|\sin\frac{m_{\nu}m_{\mu}\beta}{2}\right| } \\ & \leq 2\sqrt{\left(\cosh\frac{n_{0}(m_{\nu}m_{\mu}l)}{2} + 1\right)\left(\cosh\frac{n_{0}(m_{\nu}m_{\mu}l)}{2} - \cos\frac{m_{\nu}\pi}{(\lceil\frac{4\pi}{k(l)}\rceil)^{2}}\right) + 4\sin\frac{k(l)}{2}} \\ & \leq 2\sqrt{\left(\cosh\sqrt{\frac{2\pi(m_{\nu}m_{\mu}l)}{\sqrt{3}}} + 1\right)} \\ & \times \sqrt{\left(\cosh\sqrt{\frac{2\pi(m_{\nu}m_{\mu}l)}{\sqrt{3}}} - (1 + \cos\frac{m_{\nu}\pi}{(\lceil\frac{4\pi}{k(l)}\rceil)^{2}} - \cos n_{0}(m_{\nu}m_{\mu}\alpha)\right) + 4\sin\frac{k(l)}{2}} \\ & \leq 2\sqrt{\left(\cosh\sqrt{\frac{2\pi m_{\nu}m_{\mu}l}{\sqrt{3}}} + 1\right)\left(\cosh\sqrt{\frac{2\pi m_{\nu}m_{\mu}l}{\sqrt{3}}} - 1 + \frac{\lceil\frac{4\pi}{k(l)}\rceil\pi}{(\lceil\frac{4\pi}{k(l)}\rceil)^{2}}\right) + 4\sin\frac{k(l)}{2}} \\ & \leq 2\sqrt{\left(\cosh\sqrt{\frac{2\pi (\frac{4\pi}{k(l)}\rceil \cdot 2 \cdot (\lceil\frac{4\pi}{k(l)}\rceil)^{2}l}{\sqrt{3}}} + 1\right)} \\ & \times \sqrt{\left(\cosh\sqrt{\frac{2\pi (\frac{4\pi}{k(l)}\rceil \cdot 2 \cdot (\lceil\frac{4\pi}{k(l)}\rceil)^{2}l}{\sqrt{3}}} - 1 + \frac{\pi}{\lceil\frac{4\pi}{k(l)}\rceil}\right) + 4\sin\frac{k(l)}{2}} \end{split}$$

$$\begin{split} &= 2\sqrt{\left(\cosh\sqrt{\frac{4\pi(\lceil\frac{4\pi}{k(l)}\rceil)^3l}{\sqrt{3}}} + 1\right)\left(\cosh\sqrt{\frac{4\pi(\lceil\frac{4\pi}{k(l)}\rceil)^3l}{\sqrt{3}}} - 1 + \frac{\pi}{\lceil\frac{4\pi}{k(l)}\rceil}\right)} + 4\sin\frac{k(l)}{2} \\ &\leq 2\sqrt{\left(\cosh\sqrt{\frac{4\pi(\frac{4\pi}{k(l)}+1)^3l}{\sqrt{3}}} + 1\right)\left(\cosh\sqrt{\frac{4\pi(\frac{4\pi}{k(l)}+1)^3l}{\sqrt{3}}} - 1 + \frac{\pi}{\frac{4\pi}{k(l)}}\right)} + 4\sin\frac{k(l)}{2} \\ &= 2\sqrt{\left(\cosh\sqrt{\frac{4\pi(\frac{4\pi}{k(l)}+1)^3l}{\sqrt{3}}} + 1\right)\left(\cosh\sqrt{\frac{4\pi(\frac{4\pi}{k(l)}+1)^3l}{\sqrt{3}}} - 1 + \frac{k(l)}{4}\right)} + 4\sin\frac{k(l)}{2} \\ &\leq \frac{1}{2}. \end{split}$$

In particular, we have used $1 \le m_{\nu} \le \left| \frac{4\pi}{k(l)} \right|$ in third line and mean value theorem in seventh line. Now since $\lim_{l \to 0} \frac{\sqrt[3]{l}}{k(l)} = 0$, $\lim_{l \to 0} \left(\frac{4\pi}{k(l)} + 1 \right)^3 l = 0$ and so for sufficiently small l,

$$(**) \quad \sqrt{\left(\cosh\sqrt{\frac{4\pi(\frac{4\pi}{k(l)}+1)^{3}l}{\sqrt{3}}}+1\right)\left(\cosh\sqrt{\frac{4\pi(\frac{4\pi}{k(l)}+1)^{3}l}{\sqrt{3}}}-1+\frac{k(l)}{4}\right)} + 2\sin\frac{k(l)}{2} \le \frac{1}{4}$$

is satisfied and for such l, (*) is also satisfied. Thus if we define k for l satisfying (**) and apply Theorem 2.2. with A replaced by $A^{m_{\nu}m_{\mu}}$, we obtain the result of this theorem.

COROLLARY 3.2. Let γ' be a simple closed geodesic of length l in a quaternionic hyperbolic 2-manifold. There exists an increasing smooth function k defined for l satisfying

$$\sqrt{\left(\cosh\sqrt{\frac{4\pi(\frac{4\pi}{k(l)}+1)^{3}l}{\sqrt{3}}}+1\right)\left(\cosh\sqrt{\frac{4\pi(\frac{4\pi}{k(l)}+1)^{3}l}{\sqrt{3}}}-1+\frac{k(l)}{4}\right)}+2\sin\frac{k(l)}{2}}\leq\frac{1}{4}$$
 and $\lim_{l\to 0}\frac{\sqrt[3]{l}}{k(l)}=0$ such that if $r>0$ is defined by
$$\cosh(r)+1=\frac{1}{2\left(\sqrt{\left(\cosh\sqrt{\frac{4\pi(\frac{4\pi}{k(l)}+1)^{3}l}{\sqrt{3}}}+1\right)\left(\cosh\sqrt{\frac{4\pi(\frac{4\pi}{k(l)}+1)^{3}l}{\sqrt{3}}}-1+\frac{k(l)}{4}\right)}+2\sin\frac{k(l)}{2}\right)},$$
 then γ' has an embedded collar $C_{r}(\gamma')$ of width r .

EXAMPLE. Define a function k as $k(l) = \sqrt[8]{l}$. Then clearly $\lim_{l \to 0} \frac{\sqrt[3]{l}}{k(l)} = 0$ and for $0 < l \le 1.103320907 \times 10^{-10}$, (**) is satisfied.

References

- W. M. Goldman, Complex Hyperbolic Geometry, Oxford Mathematical Monographs, Oxford University Press, 1999.
- [2] J. Yueping, S. Kamiya, and J. R. Parker, Jörgensen's inequality for complex hyperbolic space, Geom. Dedicata 97 (2003), 55–80.
- [3] D. Kim, Discreteness criterions of isometric subgroups for quaternionic hyperbolic space, Geom. Dedicata 106 (2004), 51-78.
- [4] ______, On discrete groups of quaternionic hyperbolic motions, Phd Thesis, SNU, 2004.
- [5] I. Kim and J. R. Parker, Geometry of quaternionic hyperbolic manifolds, Math. Proc. Cambridge Philos. Soc. 135 (2003), no. 2, 291–320.
- [6] S. Markham and J. R. Parker, Collars in complex and quaternionic hyperbolic manifolds, Geom. Dedicata 97 (2003), 199-213.
- [7] R. Meyerhoff, A lower bound for the volume of hyperbolic 3-manifolds, Canad. J. Math. 39 (1987), no. 5, 1038–1056.

SCHOOL OF MATHEMATICAL SCIENCE, SEOUL NATIONAL UNIVERSITY, SEOUL 151-747, KOREA

E-mail: dykim@math.snu.ac.kr