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GLOBAL EXISTENCE OF SOLUTIONS
TO THE PREY-PREDATOR SYSTEM
WITH A SINGLE CROSS-DIFFUSION

SEONG-A SHIM

ABSTRACT. The prey-predator system with a single cross-diffusion
pressure is known to possess a local solution with the maximal
existence time T < oco. By obtaining the bounds of W3-norms of
the local solution independent of T" we establish the global existence
of the solution. And the long-time behaviors of the global solution
are analyzed when the diffusion rates d; and ds are sufficiently large.

1. Introduction

The following Lotka-Volterra Prey-Predator system models an ecolog-
ical system in which a prey species and a predator species live correlated
on the same habitat € :

ur = u(ar — byu — cyv) for ¢t € (0, 00),
(1.1) vt = v(ag + bau — cyv) for t € (0, 00),
U(O) =ug > O, U(O) =g > 0,

where u(t) represents the population density of the prey species, and
v(t) represents the population density of the predator species at time t.
The positive constant a; means that the prey is assumed to be sharing
limited resource so that its population can increase a bit in the absence
of predator. If a; > 0 the predator is assumed to have another source of
food supply than the prey, sufficient to increase the predator population
somewhat in the absence of prey. If ag < 0 the predator population
will be decreasing in the absence of prey. The positive constants b; and
co account for the competitions within the prey species and predator
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species, respectively. ¢; > 0 represents the death rate of the prey due
to the encounter with predator. And, by > 0 is the growth rate of the
predator due to their prey consumption. The properties of the solutions
to (1.1) will be briefly discussed at the beginning of Section 4 of the
present paper.

The semilinear Lotka-Volterra Prey-Predator system includes the dif-
fusion factor for the prey and predator species :

ug = diAu + ul(ar — bhyu — cyv)  for ¢t € (0, 00),
(1.2) vy = doAv + v(ag + bau — cpv)  for t € (0, 00),
u(0) =up 20, v(0)=wp >0,

where d; and dy are positive constants which represent the diffusion
rates of the prey and predator species, respectively. The diffusion rates
dy and dy can be interpreted to reflect the probabilistic random walk of
the individuals of each species on the habitat Q. Okubo’s book [12] and
review article [13] have more details on derivations of diffusions. For the
qualitative properties of the solutions of the system (1.2) we refer the
reader to Conway and Smoller [5], [6].

Further considerations on the directed movement of the individuals
in each species resulted to introduce the cross-diffusion and self-diffusion
terms in the prey-predator system as in the following :

ur = Af(d1 + aaiu + aigv)u] + u(ar — biu — c1v)
Vg = A[(dg + ao1u + QQQ’U)U] + ’U(a2 + bou — CQ’U)

(1.3) in 2 x (0, 00),
Qu—u_y ' on 99 x (0, c0),

u(z,0) 2—;0(1:) >0, v(z,0)=wvp(z) >0 inQ,

where () C R™ is a bounded smooth domain. The coefficients a;;’s are
nonnegative constants for 7,7 = 1,2. And d;, b;, ¢; (1 = 1,2), and
a1 are positive constants. Only a2 may be nonpositive. System (1.3)
is generally referred as the cross-diffusion systems with prey-predator.
Throughout this paper we assume that the initial functions ug(z), vo(z)
are not identically zero. By applying the strong maximum principle and
the Hopf boundary lemma for parabolic equations (see [7], [15]) to the
system (1.6), we have that

(1.4) wu(z,t) >0, v(z,t) >0  for every z €{0,1] and ¢ > 0.

The coeflicients d; and dy are the diffusion rates of the two species,
respectively. The positive cross-diffusion rates ayo and as; mean that
the prey tends to avoid higher density of the predator species and vice
versa by diffusing away. The tendency to move in the direction of lower



Global existence of solutions to the prey-predator system 445

density of own species is represented by the self-diffusion rates a; and
oo for the prey and predator, respectively. For details in the biolog-
ical background, we refer the reader to the monograph of Okubo and
Levin [14].

For the cross-diffusion systems with prey-predator type reaction func-
tions, there are a few results mainly on the steady-state problems with
the elliptic systems, see [1], [8], [9], [11], [16]. In [18] the author studied
parabolic properties of the prey-predator Cross-Diffusion system (1.3)
in

Case(A) di =ds and a3; = agy =0,
Case(B) 0 < a9 <8aj; and 0 < ajz < 8ags.

The local existence of solutions to (1.3) was established by Amann [2],
[3], [4] which deal with more general form of equations :

ur = Al(dy + anu + av)u) + u f(z,u,v) in Q x (0, 00),
vy = Al(d2 + a21u + az2v)v] + vg(z,u,v) in Q x (0,00),
%Z%zo on 99 x (0, 00),
u(z,0) = ug(z) >0, v(z,0)=wvp(xz) >0 inQ,

(1.5)

where f and g are functions in C®(Q2 x R?, R). According to his re-
sults the system (1.5) has a unique nonnegative solution u(-,t), v(-,¢) in
C([0,T), Wx(2))NC>((0,T),C>(Q2)), where T € (0, 00] is the maximal
existence time for the solution u, v. The following result is also due to
Amann [3].

THEOREM 1. Let ug and vo be in W, (). The system (1.5) pos-
sesses a unique nonnegative maximal smooth solution u(z, t),_v(x, t) €
C([0,T), Wa()) NC°( x (0,T)) for 0 < ¢t < T, wherep > n and 0 <

T < oo. If the solution satisfies the estimates sup |u(-,1)|lwz(a) < 0o,
0<t<T
sup ”’U(',t)”wz}(g) < 00, thenT = +o0. If, in addition, uy and vg are in
0<t<T

W2(Q) then u(z, 1), v(z,t) € C(10,00), WE(R)), and_sup [[u(-,8)llwz(a)
0

<t<oo
< 00, sup ”’U('at)”sz(Q) < 0.
0<t<oco

The system (1.5) is a special case of the concrete example (7), (8)
in Introduction of [3], and the results stated in Theorem 1 is from the
Theorem in Introduction of [3]. The results in Theorem 1 mean that
once we establish the uniform Wpl-bound, (with p > n), independent
of the maximal existence time T for the solutions, the global existence
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of the solutions will follow. And also the uniform L..-bound of the
solutions will be obtained from the Sobolev embedding theorems.

In this paper we consider the case when a1, a1, 92 > 0 and ag; =
0 for the system (1.3) in the spatial domain Q = [0,1] C R!. The
system (1.3) is rewritten in this case as follows :

ug = [(d1 + @11 U + Q12 V)ulge + ulag — biu — c1v)

Ut = [(d2 + g U)’U]xx + v(ag + bou — czv)
(1.6) _ in [0,1] x (0, 00),
ug(z,t) = vy(z,t) =0 at . =0,1,

u(z,0) = uo(z) >0, wv(z,0) =wvo(z) >0 in [0, 1],

where d;, a, a1, b;, ¢; are all positive constants for 7,7 = 1,2, and as is
a real constant. Throughout this paper we assume that the initial func-
tions ug(z), vo(z) are not identically zero and contained in the function
space W1 ([0, 1]). This system does fall into neither Case(A) nor Case(B)
that have been studied before by the author in [18]. One way to inter-
pret the biological meanings of the cross- and self-diffusion terms in
system (1.6) is that the prey species tends to avoid higher density of the
predator species and its own species. And the predator species tends to
avoid higher density of its own species.

The parabolic maximum principle does not apply to the prey-predator
model. Thus, even though system (1.6) does not have the cross-diffusion
term for the predator species v, it is impossible to obtain the uniform
bound of v(z,t) for (z,t) € [0, 1] x 2. Hence it is impossible to use the
same technique for system (1.6) as in author’s paper [17] on the cross-
diffusion system with competition type reaction functions and single
non-zero cross-diffusion term.

We first obtain the uniform bound of the local solution of the sys-
tems (1.6) independent of T, the maximal existence time by applying
the calculus inequalities of Gagliardo-Nirenberg type. From this we es-
tablish the existence of the global solution to system (1.6). In each step
of estimates of the solution we look for the contribution of the diffusion
coefficients di, dy and conclude that the uniform bound of the solution
is independent of dy, ds if d, d1,d2 > 6 for any positive constant §. Using
this result we obtain results on the long-time behaviors of the solution
to (1.6) for large dj, ds.

Here we state the main theorem of this paper on the global existence
of the solution to (1.6).

THEOREM 2. Suppose for system (1.6) that the initial functions ugp,
vy are in W2([0,1]), and let (u(x,t),v(z,t)) be the maximal solution
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obtained as in Theorem 1. Then there exist positive constants tg, M' =
M/(dla d2a 11, 012, &1, A4, bi) Ci,'l: = 1’ 2)7 and M = M(dl, d2’ a1, 012,
a1, G, bi, ¢, 1 = 1,2) such that
max{[|u(-, )lirz Jv( D)z i t € (b0, T)} < M/,
max{u(z,t), v(z,t): (z,t) € [0,1] x (to,T)} < M,

and T = +o00. That is, (u,v) is the global solution to (1.6). In the case
dq,dy > & for any positive constant &, the constant M is independent of
the diffusion coefficients dy and dy, that is, M = M (8, a1, o2, @o1, a;, bi,
ci,t=1,2).

Following Section 1. Introduction, we list in Section 2 the Calculus
inequalities that are necessary in the proof of Theorem 2. Section 3 is

devoted to the proof of Theorem 2. In Section 4 the long-time behaviors
of the global solution to (1.6) are investigated.

2. Calculus inequalities

THEOREM 3. Let Q2 € R™ be a bounded domain with 0 in C™.
For every function v in W™"(Q), 1 < q,r < oo, the derivative D’u,
0 < j < m, satisfies the inequality

(2.1) |D7ulp < C(ID™ulfuly™® + fuly),

where % = 7'1+a (% - %—) +(1 —a)%, for all a in the interval # <a<l,
provided one of the following three conditions :

(i) r<q,
. n{r—q)
(ii)) 0< —gﬁ <1, or

(iit) n(T;—:qq) =1 and m — % is not a nonnegative integer.
(The positive constant C depends only onm, m, 7, q, r, a. )

Proof. We refer the reader to A. Friedman (7] or L. Nirenberg [10] for
the proof of this well-known calculus inequality. O

COROLLARY 4. There exist positive constant C such that for every
function u in W3 ([0,1])

12
(2.2) lule < Clluel3 |uli + |ul1).
Proof. m =1, r = 2, ¢ = 1 satisfy the condition (ii) in Theorem 3. O
LEMMA 5. For every function u in W2([0,1]) with u,(0) = u(1) =0

1 1
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Proof. Using the given boundary conditions and Hoélder’s inequality
fol u2 dr = — fol Wlgy dT < |Uggla|ulo,
and thus the inequality (2.3) holds. O

LEMMA 6. For every u in W3([0,1]) with uz(0) = uz(1) =0

2 1
(2.4) |uzzl2 < |waz|§ |u|23,

Proof. Using the given boundary conditions, Holder’s inequality and
the inequality (2.3) in the previous Lemma

0 ng dzx = _fo UgUgze AT < |ux|2lumxz|2 < iumz|22 |u122|um:m:|2

3 1
Thus we have |uzz|¢ < |ugee|2|ul?, and thus the assertion is proved. O

LEMMA 7. If a function f is in the space W4 ([0, 1]), then there exists
a constant C > 0 such that

(2.5) 120 < C((L+ DISE + el fal3),
for every 0 < e < 1.

Proof. Suppose first f € C'[0,1]. By Lemma 5.2 of (7] there ex-
ists a function F' in C}(R!) such that F = f in the interval [0, 1] and
||F||W3(R1) < C|fllj2, j =0, 1. For the function F we have the inequal-
ities
2 [pi|FFy| dx
Jr (62[le2 + %JFIZ) dz
el Pl L@y T el FlL@)

|F?| [ mr) < Jpal (F?)z| da

Al

Thus now for f we have
(26) 12loo < [Pl < el Fellyqan) + HFI2, gy < €ClAIR o+ IR

for every € > 0.

Suppose now that f € W3([0,1]). There exists a sequence {f;} in
C'[0,1] such that || fi — flli2 = 0, [fi = fllo2 — 0, |fi = floo — 0 as
i — 0o. Hence by passing limits in the inequality (2.6) for f; we obtain
the inequality (2.6) for f € W3 ([0,1]) and thus the inequality (2.5) for
every 0 < e < 1. O
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3. W2 estimates for the system (1.6)

Proof of Theorem 2. Step 1. Taking integration of the first equation
in the system (1.6) over the domain [0, 1] we have

ad?folu t) dz fo aw—bw —cluv) dz
a [ ud:c—blf() u? dx
a1f0udx by ( foudac

b1(§ ~ Joudz) f) u da.

A IA

In the case that fol up dr < ¢ we have that fo u(z,t) de < 2 for all
t > 0. In the case that fol ug dr > % there exist positive constants ¢

and 1y such that fol u(z,t) dr < §+ g for all t € (19,00). Hence we
obtain the L;-bound of u for all time.

The Li-bound of v does not come directly like the case of u above.
We first have to observe the Lo-estimates for v. Multiplying the second
equation in (1.6) by v, we obtain

f L2 dz
fo dg’l) + Q22 V%) gz dz + fo (a2 + bou — cov) dx
—d fo v2 dz — 2099 fo vl dz
+a2f0 v dx+b2f0 uv d.’L'_CQfO

~da [y v2 dz + ag [y v? da + by Mofv?|eo — c2 (f : d“f)

3
—dzfo v2 dx—i—agfo v dz — ¢y (fo 2d:::)
’H)QMOC( fol 2dr + efo v2 dm)

IA
wloo

IA

where we applied the calculus inequality (2.5) to the function v :

W%lee < O ((1+ )Ivf3 + efusl?)

(3:2) - c((1+5) )7 dz+e fy o} dz)),

for every 0 < e < 1.

fol v? dz < (fol(vz)% d:v)% = (fol v® dx) ,

win

(3.3) - fol v3dr < — (fol v? dm) %.
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Now we take a small value for € > 0 so that we obtain

1ld 2
5t 0” dx

I

3 ~
~dy fol v2 dz — ¢y (fol v? dw) P+ O [yt dr
é A
—cp (fol v? dw) "+ C [y dx,

where dy and C are positive constants depending on da, a4, b;, and ¢;
(t = 1,2). Ifdy > 6 > 0 then we can take do independent of dy by
choosing small € > 0.

Hence we conclude that there exist positive constants My = My(d2, a;,
b, ci,i = 1,2) and 7y such that

IN

(3.4) fol u dr < My, fo t)dz < My for all t € (19, 00).

If d2v > 6 > 0 then we can take M, independent of ds, that is, My =
MO((sv g, bia Ciy i = 17 2)

Step 2. Now we estimate the Ly-norm of u using the estimate (3.4)
of v. By multiplying the first equation in (1.6) by u and integrating over
[0,1] we have for t > 111

3 dt 01 dz
= fO d1u + a11u + alzuv)m dx
—l—fl u?(a; — byu — c1v) dx
(3.5) = —[i( d1 + 201U + aav)ul dr — fol QUL Yz AT
+ fo (a1 — byu — clv) da:
—d fo 2 dz — 2011 fo uuZ dx
—ai2 fo UUgVy dx + a fo u? dz.

IA

The mixed term of u and v in the last line of (3.5) is estimated as follows :

|f01 WUV, ] £ fol wul dz + o fo wv? dz
: fol uu2 dz + (v [y |u] dz
fol uu2 dx + 26M0|vgg|2

Ouu2dw+C’fO v2 dz + € [} v2, dz,

IAIN N IA

2
2

for any small ¢ > 0 and for some positive constant C' by the inequal-
ity (2.5). Thus we have

)

14 fol wdr < —-d; f? v dx — (2001 — 2a12 fo uul dx
(3.6) +C 0, v2 dz + ez fo v, dx

< —dlfou dm—i—C’va da:+ea12f0 v2, dz.
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In order to deal with the v-terms in the last line of (3.6), multiply the
second equation in (1.6) by —vg, and integrate over [0,1] so that we
have

dt
= — [y Vee(dov + 20990%)y dz
— [ vegv(ag + bou — cov) dz
(3'7) - fo 'Uzz(dZ'Ua:x + 2(122'11 + 20‘227)'0:29:) dx
—as f vvm dz — by fo uvvm dz + co fo V20gq dz
—ds fo m dr — 2099 fo V2 dx
_ +as fo v dx — by fo UVVgg AT + Co fo v3ugy dz.

AN

For the terms in the last line of (3.7) we make the following observations.

(3.8) fol V2Uge dz = 0,

(3.9) Jo P do = =2 fvuldz < 0.
From the estimate (3.4) and (2.5)

|f0 UV d|
1 Ouzvzda:—FelfO v2, dz
lu% Jou? do+ e Jio, do
|u2|oo +€ fo 2. dz
o (14 2)1uf + elusld) + €2 f 2, do

C’fol 2dm+ef0 de—l—efol 2 dx

[

(3.10)

IA A IA A

for any small € > 0 and some C > 0 by choosing small ¢; > 0 and
€2 = o(€1). Substituting the estimates (3.8), (3.10), and (3.9) into (3.7)
we obtain
1d fh2de < —(dp—eca) fyy ra dz

+(a2 +Cb2 fO ’U dx + ebs fO 2 dx.

6) and (3.11) we have

3.
%dif (u? +v2)dz < —(dy — eby) fo uj do
" (<o ) [k
+(a1 + Cba) fy 2‘1“’+a2ff) v dz.

(3.11)

Now adding

Let us denote C’g = min{d; — eba, da2 — ea12 — eba} for the simplicity
of notation. Here we can choose small enough ¢ > 0 so that Cy > 0.
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Especially, if di,dy > § > 0, then Cp > % for small € > 0. Hence we
finally have for ¢ > 71 > 0

%gt 0(u + v )dw

—Cgfo 2dm+f )dx+C1f0u+'v)da:
—Ca(( fo u? dr)3 fo v2 dz)? +C1f(u +v2) dz + C
—Cg(f (u? + v2) dx)? +C’1f0 u? +v2) dz + Cy

by using the inequalities (2.2), (2.3) and the uniform bounds of |u|; and
|v|2 from Step 1.

(3.13)

IANRVANRVAN

Therefore we conclude that there exists a positive constant M; de-
pending only on di, a11, 012, 22, G4, by, ¢, (z =1,2) such that

(3.14) u?(t) de < M; and fo t) de < M,

for t € (7'1,00), where 7 is a positive constant. If dy,ds > § > 0, then
M; depends only on 6, a11, cug, age, a;, by, ¢, (i =1,2).

From the results that |v|a < My and |vzz|s < M; and the calculus
inequality (2.5) we obtain the uniform pointwise bound of v : there

exists a positive constant M; depending only on mo, d;, a11, a2, age,
a;, b, ¢, (i =1,2) such that

(3.15) Voo < M for all ¢ € (11, 00).

If di,dy > 6 > 0, then M; depends only on §, i1, @12, 099, a;, b;, ¢,
(i=1,2).

Step 3. Multiplying the first equation in (1.6) by —ug, and integrat-
ing over [0, 1], we obtain

1d 12
3t Jo Uz 4T

= — | um(dlu + anu? + appuv) g do
- umu(al — biu — c1v) dx
< —dy fO ua:x 2dz
—2a19 fo UgUgplhgy AT — X192 fo Uy Ugpy AT
+ap fo u2 dx + by fo wlugg dz + ¢ fo UVUgy dT,

(3.16)

by noticing that fo u2uzy dz = 0. For the terms in the last line of (3.16)
we make the following observations.

lfol Ug Vg Uz dx' < |uz|oolth2luzx|2 < Cluxloolule2
(3'17) < Clu:nl2 +3 €|um|%
< Clux[2 + €|uxx|2a
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'fol UUgz Vg dCL’I < lv:czloolu|2|uwwl2
< Clvgs|eoluas|2
3.18 xx oo |Uzx
( ) < Clvxxlgo + elumlg
< Clvmzlg+6|Uzleg+5|umm|27
(3.19) |f01 wugg dr| < C’fol 4 dx + efo u2, dr

IA

C+C.f dm+€f0 uxzdm,
and from (3.14) and (3.15) in Step 2 we have

|f01 wugg dz| < M fo |uttze| dz
(3.20) < Cfy 2dm+ef0 2. dz
< C+ efo u2, dz
for any small € > 0 and some C > 0, C > 0. Substituting (3.17), (3.18),
(3.19), and (3.20) into (3.16) we have

fl 2dzx
2 dt Jo 1
(3.21) < —(dy - 4e fo (Use)? dz + (a1 + C) f; u2 dzx

+C’f0 dm+ef0 v2,, dz+C.

Now we take the second derivative of the second equation of (1.6) with
respect to z, multiply by v, and integrate over [0, 1] to obtain

(3.22) %c‘lit 01 2 de = —dy lfol vgm dzx — 6aga fol Vg VUpaVzze AT
+f0 GzVer d,

where G = v(as + bau — cov), by noticing that

fol (v2)x:c:c:cva:x drz = fO zvvz)xacxvmz dz
= 2f0 V2 + VU )2z Vzs dT
= =2 fO 3VgVze + VVzoe)Vzzz AT,
since vy = Vzpe = 0 at £ = 0,1 because of the system (1.6). In the
following we estimate the terms on the right hand side of (3.22).

|f01 VeVzxVzzz d$| < lvzmloolva:|2|vxxx|2
< C"U | |'U Iz
3.23 — T |0 bt s34 124 93
( ) < O"Umxl2 2|'Uxxxl2
< C|sz|2 + E|me|2

fol GagVze dz = fO eVzzs d
(3.24) < f01 G2 dx + e fO Uzzx dz
< Clolu +vw)da:+ef0 u2, dz

+¢ fo . dT + efo 2 oz AT,
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since
folGida: folu —I-v dm+Cf0 u? +v?)(u2 +v2) dzx

C e ) doCltk s el

C 0 ) dzr + f(|um|2 + |Uxx|2)-

FANVANR VAN

Substituting (3.23) and (3.24) into (3.22) we obtain

1
(3.25) %d% ngx dr < —(d2—2e fo Vo d:c+ef0 u? 5 Az
+C [f vl de+C [l u 2daz:+C’

Adding (3.21) and (3.25) we have for t > 75 > 0

1d 2 4+ vm) d:c
—(dy — 5e) fo Uge)? dz — (dg — 3e€) f v2,, dz
-I-C'fo1 2 dm+Cf0 v2, dr+C
(326) < =0y <f0 ’U,i dx) —Cy (f() v2 d.’L‘)
+C fy (ui + %) dz+C
3
< —C, ( S+ o2,) d:z:) PO M2 +02,) do+C,

IN

[ {0

where Cy > 0, by using the inequalities (2.3), (2.4) and the uniform
boundedness of |ulz and |v|z. Especially, if dij,d2 > & > 0, then we
can choose Cy > g for small ¢ > 0. Therefore we conclude that there
exists a positive constant Mz dependmg only on dz, a11, a2, 02, 4;,
bi, ¢, (i = 1,2) such that f 2(t) dz < Ms, and fo v2,(t) dr < Mj for
t € (12,00), where 72 is a posmve constant. If dq,dy > 6 > 0, then M
depends only on 6, a1, a2, ag, a;, b;, ¢, (1 =1,2).

From the results of Step 1, Step 2 and Step 3 we have a constant
M independent of T and depending only on d;, ai11, 12, aoe, a;, b, ¢,
(¢ =1,2) such that

max{||u(-, t)ll12, [lv(-t)ll22:t € (¢, T)} < M
for (u,v), the maximal solution to the system (1.6). If d1,d2 > § > 0,

then M depends only on 6, a1, au2, a9, a;, b;, ¢, (1 = 1,2). We also
conclude that T' = +o0 from Theorem 1. : O
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4. Convergence results

The ordinary differential equation system (1.1) is called the kinetic
system of the cross-diffusion system (1.6). Before we discuss the asymp-
totic behaviors of the solution to (1.6) let us observe the kinetic system
of (1.6).

The asymptotic behaviors of the solutions of system (1.1) are classi-
fied into the three cases when :

tothe )
() -p2<m<n, @) S<® ) 2<-pa

ai
N2
\
u < u
a1 a
_M/b><b_;
bico
az 4

c2

. b " - b
(i) —g2<2<2 (i) £ <& (iii) & <-§2

FIGURE 1. The unique nonnegative stable steady-state
of the kinetic system (1.1) in each case of (i), (ii), (iii)

In each case above the kinetic system (1.1) has a unique nonnegative
stable steady-state as illustrated in Figure 1. The positive steady-state
(@, ) in the case (i) in Figure 1 is given by

(@) = (Sie5ties s Sertomer)
The nonnegative steady-states (@, ), (0, 22), and (§,0) of the kinetic
system (1.1) are also nonnegative constant steady-states of the semilin-
ear system (1.2) and the cross-diffusion system (1.6).

For the semilinear pre-predator system (1.2) the asymptotic behaviors
of the solution have been studied by Conway and Smoller [5]. They
showed under some condition the solution to (1.2) is uniformly bounded
and converges to the positive constant steady-state.

In this section, we prove similar convergence results for the cross-
diffusion system (1.6) in case (i). In case (ii) and (iii) we can prove
convergence properties by using Liapunov functionals of different form
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from case (i). For this, refer the author’s paper [18]. In case (i) for
system (1.6) .we obtain the following convergence results saying that
under some condition a cross-diffusion prey-predator system has the
same asymptotic property as its kinetic system :

THEOREM 8. Suppose that ~§1€2 < & < 24 for the system (1. 6)

Let dy,ds > 6 for any positive constant 6, and uo, vg be in W2([0,1]). I
di1, dy satisfies that

(4.1) (b202,T° + a2, 5% ) M? < 4byciTTd dy,

where M is the positive constant in Theorem 2 (independent of di,ds),
then the solution (u(z,t),v(z,t)) converges to (@, v) uniformly in [0,1]
as t — oo, and (@, ) is globally asymptotically stable.

Proof. In this proof we consider the case (i) when —32 62 <@z <4
Using the functional H(u,v) defined below we observe the convergence

of global solutions of the cross-diffusion prey-predator system (1.6) :
(42) H(u,v) = fy {bo(u—T~Tlog¥) +c (v—T—Tlogl)} dz,

where (4,7) = (P23, %f%;i—‘;;%) is the positive stable steady-state of
the kinetic system (k) in the case (i) as shown in Figure 1. H(u,v) is
always nonnegative and is zero only if v = @ and v = 7. In order to
prove the convergence of the solution first we observe the time derivative
of H(u(t),v(t)) for the system (1.6) :

dH (u(t) v(t))

= fol{bz( u)ut + Cl(]. — —)’Ut} dx
o {1b2(1 = B)(dru + on1v? + 012uv)ge
-I-Cl( — —)(dgv + QiooV ):c:c} dx
+f0 {bo(u —u)f + c1(v —D)g} dz
= — fo {% (d1 + 2a11u + algv)u + Muzvz
+91§(d2 + 2a99v)v2} dz
- fo {biba(u — W)? + crc2(v — D)2} du,
where we denoted f = a1 —bju—civ and g = as+byu—cov and used
the fact that
ba(u—u)f + c1(v — T)g
= bo(u—w)(a1 — biu — c1v) + c1(v — T)(az + byu — c2v)
= —by(u—7)(b1(u—T) +c1(v — 7))
+c1(v —U)(be(u — ) — co(v — D))
= —b1b2(u — ﬁ)2 — Clcz(v — 5)2.

(4.3)
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Now we remind the uniform boundedness result for the solution of the
system (1.6) in the case d > 6 > 0 as in Theorem 2 that there exist
positive constants tg and M = M (6, a11, a2, @21, a;, b;, ¢;, i = 1,2) such
that

(4.4) 0<u(z,t), vizg;t) <M for every (z,t) € [0,1] X (tg, 00).

From the proof of Theorem 2 we can choose the constant M depending
on the initial functions ug, vo so that the inequalities in (4.4) hold for all
t > 0. Using (4.4) and condition (4.1) in the hypothesis of the present
theorem(Theorem 8) for every constant v such that

b2ﬂ(4015d1d2 — bga%ZﬂM2)
A[bou(dy + 2a11 M + a12MYM? + ca19(da + 2a22M)M2}]
we have the following inequality :
(4.5)

0 < v <

b;“ (d1 + 20111 + ag2v)ul + bz—";&ﬂuwvgC + ";jl—f(dz + 2020002
> 7{“9: + v:v}a
since

(Pae12®)2 _ 48 () + 2010 + a120) — YH{DE (dp + 2029) — 7}

b222

< Pl 1 4b2c]uvd1 do
+4’7{—% d1 —I— 2a11M + algM) + -lg—(dz + 20122M)}
+47{b2u(d1 + 2a11M + Osz)M + Clv(dg + 2a22M)M2}]
< 0.

From (4.3) and (4.5) we have for t > 0

dH(ugt),v(t)) < ’Yf {’U, +’U2} dx

—fO {b1ba(u — )2 +cico(v —0)?} dz
< 0.

We notice that ——M =0 only if u(z,t) =u and v(x,t) =
Thus it is shown that H(u(t),v(t)) 0 as t — oo. And we ob-
tain the Lo convergences, |u(t) —@ls — 0, |[v(t) — Tl - 0 ast — o
by using the uniform boundedness of (u(z,t),v(z,t)) in [0,1]. From
Theorem 1 with the assumption that ug, vo € WZ([0,1]), we have that
sup |ugz(t)|2 < 0o, and sup |vgz(t)]2 < co. Applying the calculus in-

<t<oo 0<t<oo

equality (2.3) in Section 2 to the functions u(x,t) — 7 and v(z, t) U, we
obtain the convergence (u(z,t),v(z,t)) — (%,7) as t — oo in W2 ([0, 1]).
By using the Sobolev embedding theorem we show that (u(z,t),v(z,t))
converges to (%,v) uniformly in [0,1] as ¢ — co. We also obtain that
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(@, ) is locally asymptotically stable in C([0,1]) by using the fact that
H(u(t),v(t)) is decreasing for ¢ > 0. Thus we conclude that (T,7) is
globally asymptotically stable. O
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