Improvement of Mechanical and Electrical Properties of Poly(ethylene glycol) and Cyanoresin Based Polymer Electrolytes

  • Oh Kyung-Wha (Department of Home Economics Education, Chung-Ang University) ;
  • Choi Ji-Hyoung (Department of Fiber and Polymer Engineering, Hanyang University) ;
  • Kim Seong-Hun (Department of Fiber and Polymer Engineering, Hanyang University)
  • Published : 2006.06.01

Abstract

Ionic conductivity and mechanical properties of a mixed polymer matrix consisting of poly(ethylene glycol) (PEG) and cyanoresin type M (CRM) with various lithium salts and plasticizer were examined. The CRM used was a copolymer of cyanoethyl pullulan and cyanoethyl poly(vinyl alcohol) with a molar ratio of 1:1, mixed plasticizer was ethylene carbonate (EC) and propylene carbonate (PC) at a volume ratio of 1:1. The conductive behavior of polymer electrolytes in the temperature range of $298{\sim}338\;K$ was investigated. The $PEG/LiClO_4$ complexes exhibited the highest ionic conductivity of ${\sim}10^{-5}S/cm$ at $25^{\circ}C$ with the salt concentration of 1.5 M. In addition, the plasticized $PEG/LiClO_4$ complexes exhibited improvement of ionic conductivity. However, their complexes showed decreased mechanical properties. The improvement of ionic conductivity and mechanical properties could be obtained from the polymer electrolytes by using CRM. The highest ionic conductivity of PEG/CRM/$LiClO_4$/(EC-PC) was $5.33{\time}10^{-4}S/cm$ at $25^{\circ}C$.

Keywords

References

  1. J. R. MacCallum and C. A. Vincent, 'Polymer Electrolyte Reviews', Elsevier, London, 1987
  2. K. W. on, H. J. Park, and S. H. Kim, J Appl. Polym. Sci., 88, 1225 (2003) https://doi.org/10.1002/app.11783
  3. B. Scrosati, 'Applications of Electroactive Polymers', Chapman & Hall, London, 1993
  4. K. W. Oh, D. J. Kim, and S. H. Kim, J Appl. Polym. Sci., 84, 1369 (2002) https://doi.org/10.1002/app.10272
  5. K. W. Oh, H. J. Park, and S. H. Kim, J Appl. Polym. Sci., 91,3659 (2004) https://doi.org/10.1002/app.13603
  6. S. H. Kim, J. Y. Kim, J. K. Kim, H. N. Cho, and C. Y. Kim, J Korean Fiber Soc., 35, 685 (1998)
  7. H. Ahn, W. H. Park, and T. S. Lee, J Korean Fiber Soc., 40,492 (2003)
  8. H. S. Bae, J Korean Fiber Soc., 38,182 (2001)
  9. N. Bhattarai, M. S. Khil, S. J. Oh, and H. Y. Kim, Fibers and Polymers, 5, 259 (2004) https://doi.org/10.1007/BF02875522
  10. J. S. Son and D. S. Ji, Fibers and Polymers, 4, 156 (2003) https://doi.org/10.1007/BF02908272
  11. R. H. Baughman, Makromol. Chem., Macromol. Symp., Kyung Wha Oh et al. 51,193 (1991)
  12. Q. Pei and O. Inganas, Synth. Met., 55, 3718 (1993)
  13. T. F. Otero, E. Angulo, J. Rodriguez, and C. Santamaria, J Electroanal. Chem., 34, 369 (1992)
  14. T. F. Otero, J. Rodriguez, E. Angulo, and C. Santamaria, Synth. Met., 55, 3713 (1993)
  15. A. Mazzoldi, C. Degl' Innocenti, M. Michelucci, and D. De Rossi, Mater. Sci. Eng., C., 6, 65 (1998) https://doi.org/10.1016/S0928-4931(98)00036-8
  16. K. Yamada, Y. Kume, and H. Tabe, Jpn. J Appl. Phys., 37, 5798 (1998) https://doi.org/10.1143/JJAP.37.5798
  17. T. W. Lewis, G. M. Spink, G. G. Wallance, D. De Rossi, and M. Pachetti, Polym, Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 38, 520 (1997)
  18. P. V. Wright, Br. Polym. J., 7, 319 (1975) https://doi.org/10.1002/pi.4980070505
  19. D. E. Fenton, J. M. Parker, and P. V. Wright, Polymer, 14, 589 (1973)
  20. S. H. Kim, J. Y. Kim, H. S. Kim, and H. N. Cho, Solid State Ionics, 124, 91 (1999) https://doi.org/10.1016/S0167-2738(99)00104-6
  21. W. T. Whang and C. L. Lu, J Appl. Polym. Sci., 56, 1635 (1995) https://doi.org/10.1002/app.1995.070561214
  22. D. W. Xia and J. Smid, Solid State Ionics, 14,222 (1984)
  23. R. Spindler and D. F. Shiver, Macromolecules, 19, 347 ( 1986) https://doi.org/10.1021/ma00156a018
  24. J. Y. Kim and S. H. Kim, Solid State Ionics, 124, 91 ( 1999) https://doi.org/10.1016/S0167-2738(99)00104-6
  25. M. Watanabe, Polym. J, 17,549 (1985) https://doi.org/10.1295/polymj.17.549
  26. G. Feuillade and Ph. Perche, J Appl. Electrochem., 5, 63 ( 1975) https://doi.org/10.1007/BF00625960
  27. M. Watanabe, M. Kanba, H. Matusuda, K. Tsunemi, K. Mizoguchi, E. Tsuchida, and I. Shinohara, Macromo. Chem., Rapid Communication, 2, 741 (1981) https://doi.org/10.1002/marc.1981.030021208
  28. F. Croce, F. Gerace, G. Dautzemberg, S. Passerini, G. B. Appetecchi, and B. Scrosati, Electrochim. Acta, 39, 2187 (1994) https://doi.org/10.1016/0013-4686(94)E0167-X
  29. K. M. Abraham and M. Alamgir, J. Power Sources, 44, 195 (1993)
  30. S. H. Kim, K. W. Oh, and T. K. Kim, J, Appl. Polym. Sci., 96, 1035 (2005) https://doi.org/10.1002/app.21435
  31. S. H. Kim, J. K. Choi, and Y. C. Bae, J. Appl. Polym. Sci., 81,948 (2001) https://doi.org/10.1002/app.1516
  32. T. Miyamoto and K. Shibayama, J. Appl. Phys., 44, 12 ( 1973)
  33. Y. Okamoto, T. F. Yeh, H. S. Lee, and T. A. Skotheim, J.Polym. Sci. Part A: Polym. Chem., 31, 2573 (1993) https://doi.org/10.1002/pola.1993.080311018
  34. H.J. Rhoo, H. T. Kim, J. K. Park, and T. S. Hwang, Electrochim. Acta, 42, 1571 (1997) https://doi.org/10.1016/S0013-4686(96)00318-0
  35. O. Kim and H. Choi, J. Korean Ind. Eng. Chem., 14,307 (2003)
  36. A. Webber, J. Electrochem. Soc., 138,2586 (1991) https://doi.org/10.1149/1.2087287
  37. M. Ue, J. Electrochem. Soc., 141, 3336 (1994) https://doi.org/10.1149/1.2059336
  38. C. W. Macosko, 'Rheology: Principles, Measurements, and Applications', Willey-VCH, NewYork, 1994
  39. L. E. Nielsen, 'Polymer Rheology', Marcel Dekker, Inc., New York, 1977