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Abstract

Finite element method (FEM) provides several advantages over other numerical methods such as boundary element method, since it allows
truly volumetric analysis and incorporation of realistic electrical conductivity values. Finite element mesh generation is the first requirement
in such in FEM to represent the volumetric domain of interest with numerous finite elements accurately. However, conventional mesh
generators and approaches offered by commercial packages do not generate meshes that are content-adaptive to the contents of given images.
In this paper, we present software that has been implemented to generate content-adaptive finite element meshes (c(MESHes) based on the
contents of MR images. The software offers various computational tools for cMESH generation from multi-slice MR images. The software
named as the Content-adaptive FE Mesh Generation Toolbox runs under the commercially available technical computation software called
Matlab. The major routines in the toolbox include anisotropic filtering of MR images, feature map generation, content-adaptive node
generation, Delaunay tessellation, and MRI segmentation for the head conductivity modeling. The presented tools should be useful to
researchers who wish to generate efficient mesh models from a set of MR images. The toolbox is available upon request made to the
Functional and Metabolic Imaging Center or Bio-imaging Laboratory at Kyung Hee University in Korea.
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| . INTRODUCTION major requirements is the mesh generation of an electrically
conducting volume. There have been numerous attempts to
develop effective and efficient mesh generation methods for
volumes with complex geometry. For instance, Ziolkowski
and Brauer reported a method for 2-D FE mesh generation, but
they used an equidistant technique resulting in over-sampled
elements [2]. Hartmann and Kruggel [3] also reported a fast
technique for mesh generation using bigger bricks to represent
homogeneous regions and sub-bricks for smaller regions.
Most conventional mesh generation schemes utilized the
uniform meshes where FE elements of relatively same size are
used to represent a complex volume [4, 5]. One of the
disadvantages of these approaches is overly created finite
elements, resulting in the overwhelming computational load,
although the procedure to generate FE meshes is simple and
user-friendly. In addition, there exist several commercial
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inite element method (FEM) is an efficient and powerful

F means to solve electromagnetic problems as well as

compute the solutions of complex differential equations. FEM

is widely used in various fields such as biomechanical analysis
of surgery or bioelectromagnetic source imaging [1, 2].

FEM is getting more popular in many biomedical
applications due to (1) readily available CT or MR images
where geometrical shape information can be derived, (2)
recent developments in measuring electrical or thermal
conductivity information which can be incorporated in to the
FE models, (3) numerical power that allows truly volumetric
analysis, and (4) much improved computing power of modern
computers.

To apply FEM to bioelectromagnetic problems, one of the
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limitations. First, most commercial mesh generators cannot
handle arbitrary geometry of complex biological shapes
requiring much simplification of complicated boundaries.
Second, most mesh generation techniques do not utilize the
content of image features when generating meshes, requiring
more elements to represent fine structures with much smaller
elements. This requires careful supervision of users and
manual control to generate nodes especially for complex
biological volumes. Third, most mesh generation schemes
tend to produce over-sampled elements to represent small
regions. This tends to result in the increased number of nodes
and elements, thus increasing computational load of the FE
method. Although more efficient computation techniques [10]
for the FE analysis are being introduced, there is a strong
demand for faster, more efficient and effective, and possibly
automatic mesh generator to reduce the computational load of
the FE method. Reducing the number of finite elements, while
maintaining the numerical accuracy of the FE analysis, could
be an outstanding benefit to FEM applications.

In that respect, one critical attribute of novel mesh
generation scheme can be content-adaptiveness of meshes to
the features of images or volumes of different geometries from
individuals. Recently, we developed an efficient and improved
content-adaptive mesh generation technique [11]. This
technique was based on the original framework of [12]. In our
work, we made the technique more efficient by incorporating
two additional features. First, we utilized the content-enhancing
anisotropic diffusion for pre-segmentation of sub-volumes
and improvement in the quality of the feature maps. Second,
we proposed more efficient and accurate content-adaptive
node generations schemes.

In this paper, we introduce a software package that
generates cMESHes according to our developed techniques.
The software, named as the Content-adaptive FE Mesh
Generation Toolbox, was implemented using a commercially
available computational package called Matlab [13] with GUI
interface. The package is available to those who wish to use it
in their FE analysis under the GNU General Public License
[14] upon request made to Functional and Metabolic Imaging
Center [15] or Bio-imaging Lab [16].

The toolbox follows three main steps: the first includes
morphological preprocessing of MR images for background
segmentation; the second the edge-preserving enhancement of
MR images via anisotropic filtering; the third the cMESH
generation via feature map generation, digital halftoning, and
Delaunay tessellation. Each part is accompanied with a
visualization tool to allow examination of each outcome.
Details of usage of the toolbox are summarized in the paper.

As a demonstration, we show several 2-D and 3-D cMESH
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models of the human head from a set of MR images. A
potential application of this package is the forward and inverse
computations of bioelectromagnetic problems of E/MEG
source imaging [17].

[I. METHODS AND RESULTS

Main Panel

By invoking the toolbox under Matlab, the main panel of
the cMESH generator appears as shown in Fig. 1. Three major
groups include MRI Preprocessing, Finite Element Head
Modeling, and Head Conductivity Modeling.
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Fig. 1. Main panel of the content-adaptive FE mesh generation toolbox
showing three main groups of tools.

A. MRI Preprocessing Group

To extract the head regions only, morphological processing
tools for binary mask images of MRI are available. The MRI
preprocessing panel appears as shown in Fig. 2 by invoking
MRI PreProcessing.

MRI Processing {(Ver 1.0}
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& WSk WID
© Sap NI

Fig. 2. The MRI processing tool in the content-adaptive FE mesh generator.
Results of morphological processing are shown in the single-slice
view and montage view windows. The upper shows the segmented
single MR image and the bottom a set of multi-slice MR images
simultaneously.
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MRl Content—Adaptive Finite Element Mesh Generation Toolbox

Loading of 3-D MRI Volumes: Load Image

A set of multi-slice anatomical MR images covering the
whole head can be loaded into the toolbox by invoking Load
Image.

MR Background Removal: Segmentation

To remove the background other than the head region,
morphological processing including thresholding, opening,
and closing of the head binary masks was performed. The
value of threshold to create the binary mask MR image is
controlled by users under Thresholding. With the obtained
binary masks, morphological processing to remove the noise
and artifacts of the background except the head regions is
employed automatically under Mask Proc. and Seg. Proc. This
multi-slice volume set of MR images is subsequently used in
further processing of content-adaptive mesh generation.

Visualization: View

This function shows three optional choices to visualize the
images in three different views: 3D-rendering for a
surface-rendered view of the selected volume, montage for a
simultaneous view of all slices, and contour-slices for 3-D
views of each slice with a gap.

Saving of 3-D MRI Volumes: Save

This save option saves binary mask and segmented images
of 3-D MRI. Users can choose the saving category of 3-D MRI
volumes under Mask MRI3D and Seg. MRI3D. These
different types of MR images are used later in cMESH
generation and MRI segmentation for the head conductivity
modeling.

B. Finite Element Head Modeling Group

To generate cMESHes from the preprocessed head regions,
the finite element head modeling panel appears as shown in
Fig. 3 by invoking Finite Element Head Modeling.

Loading of 3-D MRI Volumes: Load Image

A set of segmented MR volume images, preprocessed by
the toolbox, as in Fig. 2 can be loaded into the toolbox by
invoking Load Image.

Image Resize Setup: Image Selecting

With this option, the loaded set of images can be resized
according to users' specification. This option is added in case
of reducing the volume, thereby reducing the number of nodes
and element. The image selecting parameters include the size
and range of images: users can input the row and column
numbers to resize the MR images accordingly. To select MR
image slices, the following parameters can be adjusted by
users: Start, Gap, and End that decide which MR slices are
passed into the 2-D and 3-D processing of cMESH generation
by invoking Resize. Users can examine the selected MR slices
by moving up and down the slider. The selected MR images
are subsequently used in the cMESH generation.

Computation: Get Nodes -

—3-D Gradient Vector Flow Anisotropic Diffusion Filtering

In order to remove undesirable objects in the given MR
images including noise and artifacts and to pre-segment
anatomical regions, we applied the 3-D Gradient Vector Flow
(GVF) anisotropic diffusion algorithm. The GVF nonlinear
diffusion, which we successfully applied to regularize
diffusion tensor MR images previously [18], is proven to be
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Fig. 3. Finite element head modeling tool in the content-adaptive FE mesh generator. Results of 2-D content-adaptive mesh nodes are shown. The
left shows the original MR image and the right content-adaptive mesh nodes.
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much more robust than conventional structure tensor-based
anisotropic diffusion algorithm [19] and can be summarized as
follows.

The GVF as a 3-D vector field can be defined as,
V(x,y,z) = (u(x,y,2),v(x, y,2), m(x, y,2)) . 0))

The field can be obtained by minimizing the energy
functional:

e=[[[yan, +n,+n)+ V[ -Vf| oxayez
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where f is an image edge map and 7 is a noise control
parameter.

For 3D anisotropic smoothing, the structure tensor S is
formed with the components of V,

s=re)’ 3

The 3D anisotropic regularization is governed using the
GVF diffusion tensor DGVF which is constructed with eigen
components of S:

04/ = divDgy VI @

where J is an image volume in 3-D. The regularization
behavior of Eq. (4) is controlled with the eigenvalue analysis
of the GVF structure tensor.

It should be noted that this step is essential to prevent the
generation of unnecessary and spurious nodes. Any
anisotropic diffusion scheme can be used other than what we
used in this step. We also have added an option for the
conventional anisotropic diffusion method [19] for faster
execution of this functional. The diffusivity (i.e., smoothing)
of anisotropic filtering can be adjusted by controlling the input
parameter k1.

—Feature Map Generation
To derive content-adaptive mesh nodes from an image, a
feature map is generated from an image utilizing the structure

tensor matrix S as we proposed in [11]
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The structure tensor is expressed as,

i
S - x xty
1,1, Iy2 (5)

where I is an image and x and y are row and column-wise
spatial derivates.

The feature map is then derived from the eigen components
of the above the structure tensor.

Fslo ) = (s G ) £ 15 G, ) 6)

where #'s are the positive eigenvalucs of the structure
tensor matrix and i arid j are image indices . This map reflects
the edges and corners of image structures for the plus sign and
the local coherence or anisotropy for the minus sign [20].
Other measures such as mean curvature [21] could be used as a
feature extractor in accordance with the need of applications.

Finally, the sensitivity of feature map is controlled by
converting the feature map using the parameter, as shown
below,

fGH=r6n". (7

where the parameter £ has been implemented in the toolbox
as k2.

— Content-Adaptive Node Sampling Via Digital Halftoning

In order to sample content-adaptive mesh nodes from the
feature map, we used a popular halftoning algorithm as
suggested in the original work of Lee et al. [11]. The
Floyd-Steinberg error diffusion algorithm [22] was implemented
with the serpentine scanning. This is an effective tool to be
used to generate mesh nodes according to the information in
the feature map. The goal is to distribute mesh nodes according
to the density of feature maps such that node density is
proportional to the content image features. The result is that
the mesh nodes are automatically created according to the
given MR image features with the desired property in that the
node spatial density is proportional to the magnitude of the
second directional directive of the image. In this way, the
mesh nodes are produced in a manner of nonuniform sampling
(i.e., the local density of sample adapts to the local frequency
content of the MR images). There exists much advanced
halftoning algorithms [23] which could be used instead,
although they are not implemented in the toolbox.
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Mesh Generation Via Delaunay Tessellation

—2-D Content-Adaptive Mesh Generation: 2D

Before cMESH generation, physical dimensions can be
assigned to the sampled nodes by invoking Field of View. The
parameters of this option take In-plain Distance, Slice
Thickness, and Slice Gap as shown in Fig. 4 (a) to convert the
distance of sampled nodes into proper physical units in mm
and so as to slice thickness and slice gaps.

Once the content-adaptive nodes were generated from the
procedures mentioned above, mesh generation of triangular
elements in 2-D is achieved using the Delaunay tessellation
algorithm [24]. The Delaunay triangulation connects given
mesh nodes in a way that the circle circumscribing any
triangular element contains only the nodal points belonging to
that triangle [13]. The Delaunay triangulation yields a
well-structured cMESHes at a reasonable computational cost.

(a)

As mentioned previously, the cMESH generation scheme
should place small elements in high frequency regions of an
image, while larger elements should be used in low frequency
regions. This creates fine FE elements in the complex regions
and coarse elements in the uniform or feature-free regions.

Fig. 4 (a) shows the feature map derived from Eq. (6) with
the plus sign and their corresponding cMESHes in Fig. 4 (b).
There are 1614 nodes and 3139 elements. The result clearly
demonstrates that the implemented toolbox produces adaptive
FE meshes to the contents of the given MRI. That is bigger
elements are present in the homogeneous regions and smaller
elements in the high frequency regions.

Fig. 5 (a) displays the information panel with the three
parameters to control the physical dimension of the sampled
nodes. Fig. 5 (b) shows a viewing panel of 2-D cMESHes with
options to save mesh data. The mesh save option saves the

(b)

Fig. 4. (a) Feature map using Eq. (6) and (b} cMESHes from (a) with 1614 nodes and 3139 elements
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Fig. 5. (a) Input field panel of MR imaging parameters for in-plane node distance, slice thickness, and slice gap and (b) cMESH display panel of 2-D

content-adaptive mesh generator.
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node locations and node connectivity matrix such that they
can be used in any FE solvers.

3D Mesh Generator

Field of View | JECEEx: GO

Fig. 6. 3-D content-adaptive mesh generator by involving the 3-D Mesh
Generator.

—3-D Content-Adaptive Mesh Generation: 3D
Fig. 6 shows the 3-D content-adaptive mesh generator by
invoking 3D. Once the content-adaptive nodes were generated
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in 3-D slice by slice, mesh generation of tetrahedral elements
in 3-D gets done using the same Delaunay tessellation
procedure in a straightforward extension of the 2-D technique.
Fig. 7 (a) is the surface rendered MR volume to be meshed.
Fig. 7 (b) shows the 3-D cMESHes generated using the
implemented toolbox. There are 8342 nodes and 46830
tetrahedral elements. The characteristics of content-adaptive
meshes are clearly presented on the top slice of the head.

Resetting the Toolbox: Reset

The processed data can be reset by users to change cMESH
results by invoking Reset.

C. Head Conductivity Modeling Group

The toolbox also includes tools for electrical conductivity
modeling.

To model the head with sub-regions with isotropic conductivity,
MR images must be segmented into anatomically distinct
regions: five sub-regions including white matter (WM), gray

(a)

(b)

Fig. 7. (a) 3-D surface rendered head volume of MRI to be meshed and (b) 3-D content-adaptive meshes with 8342 nodes and 46830 tetrahedral efements

generated using the implemented toolbox.

Fig. 8. (a) 3-D surface rendered outer skull and (b) inner skull.
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matter (GM), CSF, skull, and scalp are common in E/MEG
forward and inverse problems. To assist such modeling, the
toolbox is designed to take the output files from BrainSuite
[25] which is available free of charge and does excellent job of
extracting WM, GM, and CSF; but it does not produce masks
for skull and scalp. Recently, a technique has been developed
to extract skull from MR images [26]. We have implemented
this method and incorporated into the toolbox. Fig. 8 (a) and
(b) shows the outer and inner skull surface from our
implemented tool. Our modeling tool produces conductivity
maps for each MR slice. Proper isotropic conductivity values can
be assigned to each sub-region by users.

ll. DISCUSSION AND CONCLUSION

e have presented the MRI Content-adaptive Finite Element

Mesh Generation Toolbox and its major routines. The
toolbox contains various sub-routines that are used to generate
FE meshes that are content-adaptive to given MR images or
volumes.

The toolbox described in the paper is the first release of a
software tool that can be used in various fields where FEM is
applicable. We hope it becomes a useful simulation or practical
tool to the FEM community and to those who conduct research
via FE analysis. In our research, we are currently investigating
the effect of cMESHes on the accuracy of FE analysis via
bioelectromagnetic forward solutions and the preliminary results
are presented in [27].

Next versions of the toolbox, when it becomes available,
will be announced and made available on our web site [15,
16]. We would appreciate any feedback form users.
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