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Abstract

A visual decision by clinical experts like physical therapists is a best way to detect onset and offset time of muscle activation. The current
computer-based algorithms are being researched toward similar results of clinical experts. The new algorithm in this paper has an ability to
extract a trend from noisy input data. Kalman smoother is used to recognize the trend to be revealed from disorderly signals. Histogram of
smoothed signals by Kalman smoother has a clear boundary to separate muscle contractions from relaxations.

To verify that the Kalman smoother algorithm is reliable way to detect onset and offset time of muscle contractions, the algorithm of Robert
P. Di Fabio (published in 1987) is compared with Kalman smoother. For 31 templates of subjects, an average and a standard deviation are
compared. The average of errors between Di Fabio's algorithm and experts is 109 milliseconds in onset detection and 142 milliseconds in
offset detection. But the average between Kalman smoother and experts is 90 and 137 milliseconds in each case. Moreover, the standard
deviations of errors are 133 (onset) and 210 (offset) milliseconds in Di Fabio's one, but 48 (onset) and 55 (offset) milliseconds in Kalman
smoother. As a result, the Kalman smoother is much closer to determinations of clinical experts and more reliable than Di Fabio's one.
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| . INTRODUCTION -based algorithm to detect an onset time.[3] It was based on
threshold multiplied by 1SD (1 x standard deviation), 2SD, or
38D and duration of a single EMG pulse. After Di Fabio, some
techniques have been researched to detect onset time or
interval of muscle activation.[4,5,6,7,8] Most of the techniques
commit an error when spike noise or white noise is mixed with
signal. On the other hand, the human perception can recognize
a trend of muscle activation neglecting noises. New technique
must have this ability to be robust from noisy signals.

he surface electromyography (EMG) signal is widely
T used as a suitable means to analyze the physiological
processes involved in producing joint movements.[1] Surface
EMG is very convenient trigger source in muscle-machine
interface, because it is more simple to record than the
needle-electrode EMG. Applications of surface EMG can be
useful in order to control rehabilitation devices or to study the
biomechanics and motor control of the musculo-skeletal system
during different movements of the legs and arms.[2]
Onset and offset (termination) time of muscle activations [t. BACKGROUNDS
are a key variables in a research of surface EMG. A best way A. Di Fabio's Algorithm
to detect onset and offset time of muscle activation is a visual
decision of clinical experts like physical therapists. Because of
this, a purpose of computer-based algorithm is to detect onset
and offset time exactly as like human perception.
In 1987, Richard P. Di Fabio developed the first computer

Di Fabio's algorithm is most commonly used to detect onset
time and it is also a good reference to benchmark a new
technique. Di Fabio used two variables; threshold and duration.
The threshold is calculated by adding SD factors to a mean
value of resting state of EMG signals. The SD factors mean
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Fig. 1. Statistical background of Di Fabio's algorithm. (a) is non-rectified signal, and (b) is rectified signal. . is a mean value of baseline signals, and o is SD. Di
Fabio uses baseline signal as a Gaussian-random signal. Di Fabio wants to distinguish two signals - activations and baselines - using statistical approach.

state) signal of Di Fabio's algorithm. We use this technique
compared with the results of our new algorithm's results.

B. Problems in Existing Techniques

In existing techniques to detect onset or offset time of
muscle activation, there are a lot of problems to yield some
errors.[9][10] These problems are classified by domains; time
and frequency. In time domain, the spike and white noise is
difficult to be filtered out.[2] A type I noise is the similar kind
of the spike noise, and a type Il noise is the similar of the white
noise. The type I and II noise is easy to be recorded
simultaneously during recording EMG signals. Especially in
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Di Fabio's algorithm, the type I noise on the baseline state
before muscle activation leads to early-detection or advanced
-detection of onset time. Similarly, the type II noise on the
whole state (both of the baseline and activation state) leads to
delayed-detection of onset time. Figure 2 shows problems in
time domain affected by the type I and II noise.

In frequency domain, the other problems have to be solved.
Figure 3 represents ECG artifacts on EMG signals. The
artifacts in this case share with some bandwidth of frequencies,
because EMG signal has a wide bandwidth of its frequencies.
The ECG artifacts can not be removed by frequency-based
filter.
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Fig. 2. Advanced or delayed detection of onset time caused by type ! and Il noise.
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Fig. 3. ECG artifacts on EMG signals. ECG artifacts can not be filtered out by frequency domain filter.

In this paper, we argue that new algorithm must have an
ability to recognize a big trend of EMG signals as like the
perception of human. If the new algorithm has the ability to
extract a trend of muscle activation, some noises in time and
frequency domain are not a problem to detect onset time in the
exactly same process of recognition a trend by clinical experts.
Because EMG signals are also the most random signals within
biomedical signals, the new algorithm have to be used in
random signal models.

C. Kalman Smoother '
Kalman filter was made by Rudolf E. Kalman in 1960. The

Kalman filter is a recursive estimator.[12]{13] This means that
only the estimated state from the previous time step and the
current measurement are needed to compute the estimate for
the current state. Because of this sample-by-sample approach, The
Kalman filter is very effective recursive computational
solution. Figure 4 shows steps of Kalman filtering. These steps
are calculated repeatedly in every sampling period.

To use the Kalman filter in EMG signal processing,
Gauss-Markov process model is needed.[14] In this new
model, EGRN (Envelope adding Gaussian Random Noise)
model, we suppose that the EMG signal is summation of
Gaussian-random noise and original signal which has clear
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— error covariance of estimator, Py
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Fig. 4. Recursive update loop of the Kalman filtering.
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Fig. 5. The new model of EMG signals. EMG signals are summaticn of original waveform and Gaussian distributed random noise.
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Fig. 6. Off-line process of the Kalman smoother. The forward filtering sweep means the Kalman filtering. The backward smoothing sweep is the off-line process
which is performed after sampling and filtering.
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Fig. 7. The Kalman filter and smoother simulation for random signals - 100 samples.
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Fig. 8. Necessity of iterated Kalman smoother.

envelope waveform. This model is showed in Figure 5.

The Kalman smoother is prediction of backward sweep
after Kalman filtering.[14] In figure 6, this process shows the
results from the time index 0 to N. Figure 7 represents the
Kalman filter and smoother simulation for random signals
(100 samples). In figure 7, estimate X , means the results of
the Kalman filtering and the smoothed estimates signal means
the results of the Kalman smoothing.

fil. METHODS

A. Evaluation of the Kalman Filter and Smoother

The Kalman filter is the recursive update process. The
update process goes on with orders from equation (1) to (5)

sequentially. Z, is input sequence, K , is the Kalman gain
and P, is the error covariance matrix. H , is a vector shows a
relationship between z, and X, at the time ¢,, ¢, is the
state transform matrix represents a relationship between the
state X ,and X ,.,. @, isthe covariance matrix of the white
sequence W, and R, is the covariance matrix of the other
white sequence V.

K, = PrHY (H.PTHT + R.)™! 6))
X, =X+ K. (2, — HX.) (2)
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Fig. 9. Cascading of the Kalman smoother. EMG signal is getting more clear through iterated nodes.
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The process of the Kalman smoother is composed of
forward sweep and backward sweep. The forward sweep
means the process of the Kalman filtering. In the forward
sweep, some variables must be stored as they are used in the
next (backward) sweep. Probabilistic information like priori
and posteriori must be stored. And error covariance, P ,, also
has to be stored. Using the stored variables, smoothing process
can be started with the last output sample of the forward sweep
as an initial value. Equation (6) represents the Kalman
smoother process. A(#) is smoothing gain which is defined as
like equation (7). Both of forward process and backward

2500

T

é
|

|

0 750 200 250 300 350 400

2000

1500

1000

500

4500
4000
3500
3000
2500
2000
1500
1000

500
0

0 50 100 150 200 250 300 350 400

process are sample-by-sample approaches.

X(kIN) = X(klk) + AWK (k+1IN) =X (k+11k)]  (6)

A(k) = P(k| k)T (k+ 1, E)P " (k+1|k) %)
where k=N—-1,N-2, ---,0

B. Iterated Process

The Kalman smoother must be iterated sufficiently not to
detect errors. Figure 8 shows some fault-detected events as
onset or offset in a signal which is smoothed by the Kalman
smoother just one time. Iterated process of smoothing makes
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Fig. 10. Exhaustive search for stable number of iteration in the Kalman smoother. Observations of iterations are tested from 1 to 400. Sampling frequency is 1kiz.
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Fig. 11. Threshold detection using histogram. Baseline signals are changed to be separable from activation signals by the Kalman smoother.
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Fig. 12. Detection results of onset and offset time.

EMG signal clear to be understood intuitively as like in figure
9. To find an appropriate number of iterations, we tested
whole data of individual subjects exhaustively. In figure 10,
the examples of four subjects show some fluctuations of
threshold with exhaustive searching. As a result, we can find
intervals of numbers of iterations. Obviously, there is an
optimal (or stable) number of iterations as a hundred (100).

C. Histogram of Iterated Signal after Smoothing

After repetitive smoothing process, the statistical
characteristics of signal can be changed. The noisy EMG
signal is very close to random signal. Histogram of
non-smoothed signal is the Gaussian distribution. It is hard to
distinguish the muscle activation from the baseline state.

However, the Kalman smoother make signal to be divided
in two classes; baseline and activation. Figure 11 shows this
effect of the Kalman smoother. Then, the threshold is
determined to a valley of the histogram between baseline
signals and activation signals.

D. Experimental Methodologies and Subjects

The EMG signals are recorded on the biceps brachii muscle
using MP150 system which is produced by BioPac. Ground
for differential amplification is located at wrist of the same
arm. To minimize impedance of skin, the surface EMG
electrodes are attached to the points of skin after cleaning up
carefully. Dominant arm of subject is selected and fixed on

Table 1. Results in 28D, 10ms condition.

table with height ofhis chest. Subjects lift and release his fixed
arm repetitively and freely. The experiment is lasted for about
1 minute.

The subjects are 31 persons with no abnormalities in his arm
or muscles of contraction. Their averaged age is 26.5 years old,
and the standard deviation is 2.4 years old. All of the subjects are
men who doesn't have any experiences of surgical
treatments.[15] Before starting their experiments, they are fully
understood what they do. To increase accuracy, preliminary
experiments are performed at least more than one time.

IV. RESULTS

igure 12 shows detection results of onset and offset time

by the Kalman smoother algorithm. To verify the
algorithm of the Kalman smoother, visual decision of two
physical therapists are used as a reference. Di Fabio's method
is compared with this algorithm as a control.

Di Fabio's method is combinations of two variables which
are threshold and duration. The threshold means the standard
deviation (SD) multiplied factor 1, 2 or 3. The duration is
determined experimentally from Sms to 25ms at Sms intervals.
15 combinations can be made by 3 conditions from the
thresholds and 5 conditions from the durations. Table 1 shows
results at 2SD and 10ms condition. At this condition, Di
Fabio's method can yield the minimum errors. Although it can
yield the minimum errors, they are much bigger than errors in
the Kalman smoother. In other words, the results in the

Di Fabic erfror

Kalman smoother error

onset (ms) offset (ms) onset (ms) offset (ms)
mean 109 142 Q0 137
standard deviation 133 210 48 55
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Fig. 13. Quartile of the onset and offset using Di Fabio's method and the Kalman smoother. Both of the mean error and the standard deviation in the Kaiman

smoother are smaller than both of them in Di Fabio's method.

Kalman smoother are much closer to the results of physical
therapist than in Di Fabio's method. Figure 13 represents the
details that both of mean and SD have differences and that the
Kalman smoother algorithm is better.

Validation of the Kalman smoother algorithm is performed
to different 6 muscles; masseter muscle (jaw), sternodleidomastoid
muscle (neck), deltoideus muscle (shoulder), soleus muscle
(back leg), tibialis anterior muscle (front leg) and rectus
femoris muscle (femur). From table 2 to table 4 represents
onset and offset time of these six muscles in each 15

conditions. The mean error of Di Fabio's method is 528.6ms in
1SD condition, 528.4ms in 2SD condition and 401.0ms in
3SD condition. However, the mean error of the Kalman smoother
algorithm is 34.3ms. Figure 14 shows results of detection of
the onset and offset time in each muscle.

In figure 15, ECG artifacts as the type I (spike) noise is
neglected absolutely as. like perception of human. To use Di
Fabio's algorithm, the onset time is detected as an error at
bursting of the ECG artifact. Using the Kalman smoother
algorithm, robustness of the type I noise is verified.

Table 2. Results in 18D, Sms~25ms conditions. Onset and offset time to be detected of physical therapist, Di Fabio and the Kalman smoother are compared.

Physical therapist Di Fabio Kalman smoother Di Fabio error Kalman smoother error
onset(ms)  offsetlms)  onsetlms}  offsetims)  onsetims)  offseims)  onseilms)  offsetlms)  onsetims})  offset{ms)
chewing 255 695 362 781 227 702 107 86 28 7
neck 2450 4125 297 5348 2414 4205 2153 1223 36 80
15D, 5ms shoulder 1300 3750 605 4597 1275 3812 695 847 25 62
’ back_leg 1750 4700 1717 4642 1721 4659 33 58 29 41
froni_leg 1250 3300 1277 3289 1246 3297 27 11 4 3
femur 1300 3850 1331 5713 1294 3760 31 1863 ] 90
chewing 255 695 474 652 227 702 219 43 28 7
neck 2450 4125 297 5348 2414 4205 2153 1223 36 80
1SD. 10ms shoulder 1300 3750 605 4597 1275 3812 695 847 25 62
' back_leg 1750 4700 1791 4642 1721 4659 41 58 29 41
front_leg 1250 3300 1406 3180 1246 3297 156 120 4 3
femur 1300 3850 1374 5713 1294 3760 74 1863 6 90
chewing 255 695 474 628 227 702 219 67 28 7
neck 2450 4125 297 5348 2414 4205 2153 1223 36 80
1SD. 15ms shoulder 1300 3750 1332 3732 1275 3812 32 18 25 62
' back_leg 1750 4700 1791 4642 1721 4659 41 58 29 41
froni_leg 1250 3300 1497 3129 1246 3297 247 171 4 3
femur 1300 3850 1642 3285 1294 3760 342 563 ] Q0
chewing 255 695 474 561 227 702 219 134 28 7
neck 2450 4125 331 5348 2414 4205 2119 1223 36 80
1SD. 20ms shoulder 1300 3750 1508 3732 1275 3812 208 18 25 62
’ back_leg 1750 4700 1791 4068 1721 4659 41 632 29 41
front_leg 1250 3300 1497 3129 1246 3297 247 171 4 3
femur 1300 3850 1642 3285 1294 3760 342 565 6 90
chewing 255 695 531 561 227 702 276 134 28 7
neck 2450 4125 331 3914 2414 4205 2119 211 36 80
15D, 25ms shoulder 1300 3750 1560 3608 1275 3812 260 142 25 62
’ back_leg 1750 4700 1821 3811 1721 4659 71 889 29 41
front_leg 1250 3300 1633 3129 1246 3297 383 17 4 3
femur 1300 3850 1642 2812 1294 3760 342 1038 6 90

mean eror  528.6ms  mean eror  34.3ms
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Table 3. Results in 28D, 5ms~25ms conditions. Onset and offset time to be detected of physical therapist, Di Fabio and the Kalman smoother are compared.

Physical therapist Di Fabio Kalman smoother Di Fabio error Kalman smoother error

onset(ms)  offsel{ms)  onselims)  offsetims)  onset(ms)  offsetlms)  onsetims)  offsetlms)  onset(ms)  offset(ms)

chewing 255 695 379 699 227 702 124 4 28 7

neck 2450 4125 296 5348 2414 4205 2154 1223 36 80

25D, 5ms shoulder 1300 3750 1301 4599 1275 3812 1 849 25 62
’ back_leg 1750 4700 1714 4651 1721 4659 36 49 29 41
front_leg 1250 3300 1319 3266 1246 3297 69 34 4 3

femur 1300 3850 1374 5714 1294 3760 74 1864 6 90

chewing 255 695 474 652 227 702 219 43 28 7

neck 2450 4125 296 5348 2414 4205 2154 1223 36 80

25D. 10ms shoulder 1300 3750 1332 3736 1275 3812 32 14 25 62
! back_leg 1750 4700 1791 4530 1721 4659 41 170 29 41
front_leg 1250 3300 1495 3129 1246 3297 245 171 4 3

femur 1300 3850 1699 5714 1294 3760 299 1864 6 90

chewing 255 695 474 628 227 702 219 67 28 7

neck 2450 4125 296 5348 2414 4205 2154 1223 36 80

25D, 15ms shoulder 1300 3750 1350 3736 1275 3812 50 14 25 62
’ back_leg 1750 4700 1867 3329 1721 4659 117 771 29 41
front_leg 1250 3300 1495 3129 1246 3297 245 171 4 3

femur 1300 3850 1785 2953 1294 3760 485 897 [} 90

chewing 255 695 474 561 227 702 219 134 28 7

neck 2450 4125 329 3915 2414 4205 2121 210 36 80

25D, 20ms shoulder 1300 3750 1560 3165 1275 3812 260 585 25 62
’ back_leg 1750 4700 2132 3929 1721 4659 382 771 29 41
front_leg 1250 3300 1495 3129 1246 3297 245 171 4 K)

femur 1300 3850 1785 2812 1294 3760 485 1038 ) 90

chewing 255 695 531 561 227 702 276 134 28 7

neck 2450 4125 2789 3876 2414 4205 339 249 36 80

25D, 25ms shoulder 1300 3750 1560 3069 1275 3812 260 681 25 62
! back_leg 1750 4700 2132 3811 1721 4659 382 889 29 41
front_leg 1250 3300 1629 3129 1246 3297 379 171 4 3

femur 1300 3850 2216 2812 1294 3760 916 1038 [} 90

mean ermor  528.4ms _mean error _ 34.3ms

Table 4. Results in 3SD, 5ms~25ms conditions. Onset and offset time to be detected of physical therapist, Di Fabio and the Kalman smoother are compared.

Physical therapist Di Fabio Kaiman smoother Di Fabio error Kalman smoother error

onset{ms)  offsellms)  onselims)  offset(ms)  onset{ms}  offselims)  onset(ms)  offset{ms)  onset(ms)  offset{ms)

chewing 255 695 379 683 227 702 124 12 28 7

neck 2450 4125 319 5360 2414 4205 2131 1235 36 80

35D, 5ms shoulder 1300 3750 1229 3854 1275 3812 71 104 25 62
’ back_leg 1750 4700 1774 4603 1723 4659 24 97 29 41
front_leg 1250 3300 1319 3240 1246 3297 69 34 4 3

femur 1300 3850 1374 3638 1294 3760 74 212 6 90

chewing 255 695 467 652 227 702 212 43 28 7

neck 2450 4200 1737 4090 2414 4205 713 110 36 5

35D 10ms shoulder 1300 3800 1332 3741 1275 3812 32 59 25 12
! back_leg 1750 4700 1791 4534 1721 4659 41 116 29 41
front_leg 1250 3300 1495 3144 1246 3297 245 156 4 3

femur 1300 3850 1599 3285 1294 3760 299 565 ] 90

chewing 255 695 531 610 227 702 276 85 28 7

neck 2450 4125 2521 4090 2414 4205 71 35 36 80

35D, 15ms shoulder 1300 3750 1350 3170 1275 3812 50 580 25 62
! back_leg 1750 4700 1867 3812 1721 4659 nz 888 29 41
front_leg 1250 3300 1672 2993 1246 3297 422 307 4 3

femur 1300 3850 1785 2866 1294 3760 485 984 [} 90

chewing 255 695 531 561 227 702 276 134 28 7

neck 2450 4125 2787 3876 2414 4205 337 249 36 80

3D, 20ms shoulder 1300 3750 1560 2985 1275 3812 260 765 25 62
’ back_leg 1750 4700 2132 3691 1721 4659 382 1009 29 41
front_leg 1250 3300 1672 2993 1246 3297 422 307 4 3

femur 1300 3850 1785 2643 1294 3760 485 1207 6 90

chewing 255 695 599 561 227 702 344 134 28 7

neck 2450 4125 2787 3876 2414 4205 337 249 36 80

38D, 25ms shoulder 1300 3750 1684 2985 1275 3812 384 765 25 62
’ back_leg 1750 4700 2132 3346 1721 4659 382 1354 29 41
front_leg 1250 3300 1672 2993 1246 3297 422 307 4 3

femur 1300 3850 2438 2467 1294 3760 1138 1383 [} 90

mean error  401.0ms _mean error  34.3ms
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masseter muscle

sternocleidomastoid muscle

deltoideus muscle

soleus muscle

tibialis anterior muscle

rectus femores muscle

Fig. 14. Some examples of detection of onset and offset time in different muscles.

Di Fabio error Kalman smoother error

onsetlms)  offsetims) onset(ms) offset(ms)
chewing 212 43 28 7
neck (\713 ) 110 36 5
33D, 10ms Shoulder 32 59 25 12
back_leg 41 166 29 41
front_leg 245 156 4 3
femur 299 565 6 %0

Type | noise

Fig. 15. Robustness to ECG artifacts as type | noise in EMG signals. To use the Kalman smoother, the spiky naise is neglected absolutely. -

V. CONCLUSION

he Kalman smoother algorithm is very robust to the type
I noise like a spike. In this case, the type I noise is an
ECG signal that shares its frequencies with EMG signal.
Because of the Kalman smoother represents trends of signals
well, spiky noise can be neglected as well as an ability to
extract trends from signals by perception of human.
In the aspect of error compared with clinical experts, the
Kalman smoother algorithm has higher performance in the
means and standard deviations than Di Fabio's algorithm.

140 | J. Biomed. Eng. Res.

Input signals in Di Fabio's algorithm must form the Gaussian
distribution. Otherwise, the algorithm is able to detect onset or
offset time at different time when some artifacts are bursted.
On the other hand, the Kalman smoother algorithm does not be
influenced for about any types of signal. -

The standard deviation of the results has a clear boundary
between Di Fabio's algorithm and the Kalman smoother
algorithm. Because of lack of accuracy and generality in Di
Fabio's algorithm, its results are distributed from place to
place.

Finally, process of experiments is very complex and:



troublesome in Di Fabio's algorithm compared to the Kalman
smoother algorithm,

(m

[2]

(3]

(4]

B3]

[6]
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