JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 6, JUNE 2006(pp. 693-899)

Evaluation Metrics for Class Hierarchy in Object-Oriented

Databases: Concurrency Control Perspectives

Woochun Jun'

ABSTRACT

Object-oriented databases (OODBs) have been adopted for managing non-standard applications such
as computer-aided design (CAD), office document management and many multimedia applications. One
of the major characteristics of OODBs is class hierarchy where a subclass is allowed to inherit the defi-
nitions defined on its superclasses. In this paper, I present the evaluation metrics for class hierarchy
quality in OODBs. These metrics are developed to determine if a concurrency control scheme can achieve
good performance or not on a given class hierarchy. I first discuss the existing concurrency control
schemes for OODBs. Then I provide evaluation metrics based on structural information and access fre-
quency information in class hierarchies. In order to discuss significance of the proposed performance
metrics, an analytical model is developed. Analysis results show that the performance metrics are im-
portant factor in concurrency control performance. I consider both single inheritance and multiple
inheritance. The proposed metrics can be used to provide guidelines on how to design class hierarchy

of an OODB for maximizing the performance of concurrency control technique.

Keywords: Object-oriented database, Class hierarchy, Concurrency Control

1. INTRODUCTION

OODBs have been used for many advanced da-
tabase applications such as e-commerce with mul-
timedia repositories, document management{13,14].
In a typical OODB, a class object consists of a
group of instance objects and class definition
objects. The class definition consists of a set of
attributes and methods that access attributes of an
instance or a set of instances. In OODBs, users can
access objects by invoking transactions consisting
of a set of method invocations on objects [2].

A concurrency control scheme is used to regu-
late multiple accesses to a multi—user database so
that it maintains database consistency. A con-
currency control scheme allows multi-access to a

¥ Corresponding Author : Woochun Jun, Address: (137~

742) 1650 Seocho-Dong, Seocho-Gu, Seoul, Korea, TEL:

+82-2-3475-2504, FAX : +82-2-3475-2263, E-mail : wocjun

@snue.ac.kr

Receipt date : Feb. 16, 2006, Approval date : June. 8, 2006

* Dept. of Computer Education, Seoul National University
of Education

database but incurs an overhead whenever it is
mvoked. This overhead may degrade the perform-
ance of OODBs where many transactions are natu-
rally long-lived. Thus, reducing the concurrency
control overhead is crucial to improve the overall
performance.

Inheritance is a very important concept in
OODBs where a subclass is allowed to inherit the
definitions defined on its superclasses. Also, an is-a
relationship between a subclass and its super-
classes is defined so that an instance of a superclass
is a generalization of its subclasses [5]. This in-
heritance relationship between classes forms a
class hierarchy. There are two types of accesses
to a class hierarchy, MCA (Multiple Class Access)
and SCA (Single Class Access) [6]. MCA is an op-
eration accessing possibly more than one class in
the class hierarchy. Examples of MCAs include
class definition modification operations and in-

stance accesses to all or some instances of a given

" class and its subclasses. On the other hand, SCA

is an operation accessing one class in the hierarchy.

694 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 8, NO. 6, JUNE 2006

Examples of SCAs are class definition read oper—
ations and instance access to a single class. For a
lock-based concurrency control scheme, when an
MCA operation is requested on some class C, it may
be necessary to get locks for C as well as all sub-
classes of C.

In this paper, I provide evaluation metrics for
class hierarchy quality in OODBs. These metrics
are developed to ‘determine if a concurrency control
scheme can achieve good performance or not on
a class hierarchy. The typical performance metrics
of a concurrency control scheme are response time
and locking overhead (usually represented as the
number of locks needed for an access) [1,10].
Especially, the proposed metrics for class hierarchy
can be used to determine if a concurrency control
scheme can incur less locking overhead or not. The
proposed evaluation metrics are based on both
structural information and access frequency in-
formation in class hierarchy. I also provide evalua-
tion metrics for both single inheritance and multi-
ple inheﬁtanée.

2. EXISTING CONCURRENCY CONTROL
SCHEMES

2.1 Concurrency Control Schemes Based on
Structural- Information-

2.1.1 Single Inheritance

In the literature, there are two major lock—
ing-based approaches dealing with a class hier-
archy: explicit locking [2,12] and implicit locking
[59,10,11]. In explicit locking, for an MCA operation
on a class, C, a lock is set not only on the class
C, but also on each subclass of C in the class
hierarchy. For an SCA operation, a lock is set for
only the class to be accessed (also called target
class). Thus, for an MCA, transactions accessing
a class near the leaf in a class hierarchy will require
fewer locks than transactions accessing a class near
the root in the class hierarchy. Also, explicit locking

can treat in the same way for both single in-
heritance, where a class can inherit the class defi-
nition from one superclass, and multiple inheritance
where a class can inherit the class definition from
more than one superclass. But, explicit locking re-
quires more locking overhead for transactions ac—
cessing a class near the root in a class hierarchy.

Implicit locking is based on intention locks [3].
An intention lock on a class indicates that some
lock is set on a subclass of the class. Thus, when
a lock is set on a class C, extra locks are required
to be set on a path from C to its root as well as
on C. In implicit locking, when an MCA operation
is accessed on a class C, locks are not required for
every subclass of the class C. It is sufficient to set
a lock only on the class itself. Thus, for an MCA
access, it incurs less locking overhead than explicit
locking. But, implicit locking requires more locking
overhead when a target class is near the leaf class

in a class hierarchy due to intention lock overhead.

2.1.2 Multiple Inheritance

In explicit locking, no special steps are not re-
quired for dealing with multiple inheritance. But,
in implicit locking, for the MCA access type, when
a class C is locked, all subclasses of C which have
more than one superclass are also locked [5,9]. As
an example, consider the following simple class hi-
erarchy shown in Fig. 1. Note that the lock modes
are based on an OODB system called Orion{5]. In
order to modify the class definition in class, say
F, the explicit locking scheme works as in Fig. l.a.
The W (Write) locks are required for each subclass
of F as well as the target class F. On the other
hand, for the implicit locking scheme, intention
locks IWs corresponding to W locks are required
for each superclass on the path from F to the root
A. Assume that path A-C-F is selected. Also,
classes I and J, which are subclasses of F, are
locked since those classes have more than one
superclass. Fig. 1.b shows locks required by the

implicit locking scheme.

Evaluation Metrics for Class Hierarchy in Object-Oriented Databases: Concurrency Control Perspectives 695

Fig. 1a. Locks by explicit locking.

Fig.1b. Locks by implicit locking.

2.2 Concurrency Control Schemes Based on
Access Frequency Information

In [6], the SC-based concurrency control scheme
is proposed to provide better system performance
than the existing schemes, explicit locking and im-
plicit locking. The SC-based scheme is based on
the concept of Special Class (SC) where an SC is
a class on which MCA operations are performed
frequently. In this scheme, intention locks are set
on only SCs. Thus, locking overhead is less than

that of implicit locking which requires intention
locks to be set on every superclass of the target
class. Also, in order to have less locking overhead
than explicit locking, the following principle is
adopted: for an SCA access, a lock is set on only
the target class like in explicit locking. For an MCA
access, unlike explicit locking, locks are set on ev-
ery class from the target class to the first SC
through the subclass chain of the target class. If
there is no such SC, then locks are set on leaf
classes. If the target class is an SC itself, then a
lock is set only on the target class.

The scheme is summarized as follows. Assume
that a lock is requested on class C. For simplicity,
strict two-phase locking [1,4] is adopted.

Step 1) Locking on SCs

» For each SC (if any) through the superclass
chain of C, check conflicts and set an in-
tention lock.

Step 2) Locking on a target class

» If the lock request is an SCA, check conflicts
with locks set by other transactions and set
a lock on only the target class C and set a
lock on an instance of C if a method is in-
voked on the instance

« If the lock request is an MCA, then, from class
C to the first SC (or leaf class if there is no
SC) through the subclass chain of C, check
conflicts and set a lock on each class. If class
C is an SC, then set a lock only on C.

» If class C has more than one subclass, per-
form the same step (2) for each subclass
chain of C.

For the SC-based scheme, the following SC as—
signment scheme is adopted [6]. Assuming that the
number of accesses to each class is stable and the
access frequency (of MCA and SCA) to each class
is known in advance, the SC assignment scheme
is constructed as follows. ’

//Start from each leaf class until all classes are
checked // _

Step 1) 'If a class is a leaf, then the class is as—

signed as non-SC.

696 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 6, JUNE 2006

If a class C has not been assigned yet and all
subclasses of C have been already assigned, then
do the .following:

for class C and all of its subclasses,

calculate the number of locks (N1) when the
class is assigned as SC

calculate the number of locks (N2) when the
class is assigned as non-SC

Step 2) Assign it as SC only if N; < Ng

In [7], a concurrency control scheme is presented.
The scheme is based on the SC-scheme but im-
proves it as follows. The basic idea is that some
redundant locks can be reduced without affecting
the correctness of the scheme. Assume that a class
C is accessed and thus it needs to be locked. For
the SC-based scheme, an intention lock is set on
every SC through the superclass chain of C. On
the other hand, the proposed scheme does not have
to set intention locks on every SC through the su-
perclass chain. That is, only the first SC near the
root and the last SC near class C need to be locked
as long as SCs excluding the first SC and the last
SC have only one subclass. The detailed con-
currency control scheme and the proof of its supe-
riority over the SC-scheme are shown in [7].

For example, consider the class hierarchy as in

Cl(SCl):Ll;Lz Cl(SCl)ILl;Lz
cz c2
l 4
C3(S?):Ll C3(S(i)IL1;L2
c4 c4
! !
s 5
! l
C6'Ly C6:Ly
! {
C7(SCl)2L1;Lz C7(SCL)IL1;L2
c8 cs
! !
C9(SC) C(SC)
| l
C10 C10

Fig 2a. Locks by Scheme Fig. 2b. Locks by SC-
in (7).

based scheme.

Fig. 2.a. Also, assume that locks are requested by
T and T2 as follows.
1) Ti: class definition update operation on class C6
2) T2 class definition update operation on class C7
As in Fig 2.a, 2b, 2c and 2d, 6, 7, 9 and 13 locks
are required for T and T2 by the proposed scheme
in [7], SC-based scheme, explicit locking, and im-
plicit locking, respectively.

3. EVALUATION METRICS FOR CLASS
HIERARCHY

In this section I provide evaluation metrics for
class hierarchy quality. These metrics for class hier-
archy can be used to determine if a concurrency
control scheme can incur less locking overhead or
not.

3.1 Evaluation Metrics based on Structural
Information

3.1.1 Single inheritance

As discussed in the previous section, in single
inheritance, the number of locks required for an ac—
cess to class, say C, are in proportion to the number
of subclasses and the number of superclasses of C.

C1 CliLi;Le
! d
C2 C2LiL2
! !
C3 C3:LiL2
¢
C4 C4:LiLe
! !
C5 C5LyLe
l !
C6:1, C6:Li;Le
l l
C7:Li;Le C7JiL2
C8LiLe C8
! l
CO9LiL2 C9
l l
Cl10:Ly;L2 C10

Fig. 2c. Locks by
Explicit locking.

Fig. 2d. Locks by
Implicit locking.

Evaluation Metrics for Class Hierarchy in Object-Oriented Databases: Concurrency Control Perspectives 697

Below I define the average number of subclasses
for each class in a given class hierarchy, NUMsus.
This metric is used in evaluating explicit locking.

NUMsug = (SUB1 + SUB2+-++.+SUBN~)/ N

where SUB: is the number of subclasses for
class I and N is the total number of classes in a
given class hierarchy

Below I also define the average number of su-
perclasses for each class in a given class hierarchy,
NUMsup. This metric is helpful in evaluating im-
plicit locking:

NUMsup = (SUP1+SUPy++--+SUPN) / N

where SUP: is the number of superclasses for
class I and N is the total number of superclasses

in a given class hierarchy

3.1.2 Multiple Inheritance

For multiple inheritance, in explicit locking, no
evaluation metrics are necessary since this scheme
treats both single inheritance and multiple in-
heritance in the same way. However, in implicit
locking, when a MCA lock is required for class C,
all subclasses of C which have more than one su-
perclass need to be locked as well. Thus, for im~
plicit locking, I define NUMsus-sup to be the aver—
age number of subclasses having more than one

superclass in a class hierarchy as follows:

NUMsus-sup = (SUB-SUP1+SUB-SUP;+---..+SUB
-SUPN)/N

where SUB-SUP; is the number of subclasses
having more than one superclass for class I and
N is the total number of classes in a given class
hierarchy

3.2 Evaluation Metrics Based on Access
Frequency Information

The two concurrency control schemes based on
access frequency information that have been pro-
posed in [6, 7] require accurate information on ac-
cess frequency for each class. Otherwise, either ex—

plicit locking or implicit locking should be applied
depending on the access types of transactions. That
is, if transactions accessing a class near the root
in a class hierarchy are dominant, implicit locking
is a better choice. Otherwise, explicit locking out-
performs the implicit locking.

If the access information on a class hierarchy
is available, it should be stable. Otherwise, the SC
assignment needs to be done frequently. For each
class, I can define two evaluation metrics as fol-
lows: the access frequency on class I by trans-
actions requesting an SAC type of access,
ACC-FREQsac (I), and the access frequency on
class I by transactions requesting an MAC type
of access, ACC-FREQumac ().

4. SIGNIFICANCE OF THE PROPOSED
EVALUATION METRICS

The proposed evaluation metrics are developed
to reflect number of locks by various concurrency
control schemes for a given OODB access. In order
to show that the proposed evaluation metrics are
significant, it will be shown that number of locks
is a significant factor in concurrency control
performance. Especially, I will discuss that number
of locks is significant in transaction response time.

For this purpose, a simple analytical model is de-
veloped as follows. In this model, lock contention
probability and lock waiting time are not considered.
This model is to compare response time only for
varying number of locks to a given database access.
RES= E + N*(Rser+Rrer)

Where RES is mean response time, E is sum of
execution time for N granules, Rser is mean time
to set a lock by a transaction, RreL is mean time
to release lock by a transaction. For simplicity, I
assume that response time consists of only sum
of execution time for database accesses (N gran-
ules) and sum of time to set and release locks for
N granules. Note that response time is a major
standard for concurrency control performance in
databases.

698 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 6, JUNE 2006

Table 1 shows analytical parameters adopted
from literature [8]. More general analytical model
can be found in [15].

Table 1. Analytical Parameters

Parameters Value

Rges-1 (Mean time to set a lock by an
Rees-t (. YAl 03641 ms
instance access transaction)
Rres-c (Mean time to set a lock by an

res-c (Mean time to s kDY a1 03522 ms
class definition access transaction)
Rgei-1 (Mean time to release a lock b
RreLt (m ase a Y| 00035 ms
instance access transaction)
RgeL-c(Mean time to release a lock b

sel-c(Mean a0k BV 10,0011 ms
class. definition access transaction)
E (Execution time for each granule) 2 ms

If the above model and parameters are applied
to class hierarchies in Fig. 2 (single inheritance)
and Fig. 1 (Multiple inheritance), respectively, re-
sponse time can be obtained as in Table 2.

Note that response time for single inheritance is
obtajned from two transactions while response
time for multiple inheritance is obtained from one
transaction. In multiple inheritance, reducing one
lock results in response time enhancement by 10%.

Results obtained from Table 2 shows that re-
ducing number of locks are significant factors in re-
sponse time. It means that reducing number of locks

can improve concurrency control performance. In -

turn, reducing class hierarchy depth is a major fac-
tor to reduce number of locks required.

For the same number of instance objects, class
hierarchy with low depth can increase number of
instance objects for each class object. This means

that, for such class hierarchy, locks on class ob-
jects can degrade concurrency. This is. due to that
more instance objects are blocked for a lock. Thus,
class hierarchy with low depth can reduce number
of locks but may degrade concurrency among con-
current transactions since low concurrency may

cause high lock contention.

5. CONCLUSIONS AND FURTHER WORK

In this paper, I presented the evaluation metrics
for the quality of class hierarchies_ in OODBs.
These metrics is to determine if a concurrency
control scheme can achieve good performance or
not on a class hierarchy in terms of locking
overhead. In the evaluation metrics, both single in-
heritance and multiple inheritance are considered.
Also, the proposed evaluation metrics are devel-
oped based on the structural information and ac-
cess frequency information on class hierarchies.

In order for a concurrency control scheme to have
less locking overhead, it is important to maintain
the followings for a class hierarchy: 1) low average
number of subclasses or superclass for each class
2) low average number of subclasses having more
than one superclass 3) the accurate and stable ac—
cess frequency information. However, having low

.- class-hierarchy depth for less locking overhead may

degrade concurrency among transactions so that
overall performance may be degraded.

Currently I am developing a concurrency control
scheme for controlling access to composite object

hierarchies, which is also a major characteristic in

Table 2. Response time of various concurrency control schemes

Inheritance type Concurrency control Response time

Improved SC-based locking [7] 6.1198 ms

.) SC-based locking 6.4731 ms
Single inheritance —

Explicit locking 7.1797 ms

Implicit locking -8.5929 ms

.) . Explicit locking 4.1198 ms
Multiple inheritance — -

Implicit locking 3.7665 ms

Evaluation Metrics for Class Hierarchy in Object-Oriented Databases: Concurrency Control Perspectives 699

OODBs. It is interesting to develop the evaluation

metrics for composite object hierarchies.

6. REFERENCES

[1] P. Bernstein, V. Hadzilacos and N. Goodman,
Concurrency Control and Recoveryin Database
Systems, Reading, Massachusetts, Addison-
Wesley, 1987.

[2]1 M. Cart and]J. Ferrie, “Integrating Concurren—
cy Control into an Object-Oriented Database
System,” Znd Int. Conf. on Extending Data
Base Technology, Venice, Italy, pp. 363-377,
Mar., 1990.

[3] C. Date, An Introduction to Database Systems,
Vol. 1I, Reading, Massachusetts, Addison—
Wesley, 1985.

[4] K. Eswaran, J. Gray, R. Lorie and 1. Traiger,
“The Notion of Consistency and Predicate
Locks in a Database System,” Communication
of ACM, Vol. 19, No. 11, pp. 624-633, Nov,,
1976.

[5] J. Garza and W. Kim, “Transaction Manage-
ment in an Object-Oriented Database System,”
ACM SIGMOD Int. Conf. on Management of
Data, Chicago, Illinois, pp. 37-45, Jun. 1988,

[6] W. Jun and L. Gruenwald, “An Effective Class
Hierarchy Concurrency Control Technique in
Object-Oriented Database Systems,” Journal
o Information And Software Technology, Vol.
40. No. 1, pp. 45-53, Apr., 1998.

[7] W. Jun and L. Gruenwald, “An Optimal
Locking Scheme in Object-oriented Database
Systems,” The First International Conference
on Web-Age Information Management, Shang -
hai, China, pp. 95-105, Jun., 2000.

{81 W. Jun, “A Multi-granularity locking—based
concurrency control in object-oriented data-
base systems,” The Journal of Systems and
Software, Vol. 54, pp. 210-217, Nov., 2000.

[9] W. Jun and S. Hong, “Controlling Concurrent
Accesses in Multimedia Databases for Decision

Support,” 5% Pacific Rim Conference on
Multimedia, Tokyo, Japan, pp. 180-187, Nov./
Dec., 2004.

[10] L. Lee and R. Liou, “A Multi-Granularity
Locking Model for Concurrency Control in
Object-Oriented Database Systems,” IEEE
Transaction on Knowledge and Data Engi-
neering, Vol. 8, No. 1, pp. 144-156, Feb., 1996.

[11] C. Malta and J. Martinez, “Controlling
Concurrent Accesses in an Object-Oriented
Environment,” 2nd Int. Symp. on Database
Systems for Advanced Applications, Tokyo,
Japan, pp. 192-200, Apr., 1992.

[12] C. Malta and J. Martinez, “Automating Fine
Concurrency Control in Object-Oriented
Databases,” 9th IEEE Conf. on Data Engi-
neering, Vienna, Austria, pp. 253-260, Apr.,
1993

{13] M. O'Docherty, Object-oriented Analysis and
Design, John Wiley & Sons Inc., 2005.

[14] S. Schach, Object-oriented and Classical
Software Engineering 6/E, McGraw Hill Press,
2004.

[15] P. Yu, D. Dias,]. Rohinson, B. Iyer and D.
Cornell, “Modelling of Centralized Concrrency
Control in a Multi-System Environment,”
Performance Evaluation Review, Vol. 13, No.
2, pp. 183-191, 1985.

Woochun Jun

1985 Dept. of Computer Science,
Sogang University (B.S.)

1987 Dept. of Computer Science,
Sogang University (M.S.)

1997 School of Computer Science,
University of Oklahoma,
USA (Ph.D.)

1998 ~Present : Associate Professor, Dept. of Computer
Education, Seoul National University
of Education

Research areas : Database, Web-based Learning, Mobile
Learning

