JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9. NO. 6, JUNE 2006(pp. 742-749)

Design of Network-based Game Using the
GoF Design Patterns

Jong-Soo Kim*, Tai-Suk Kim'

ABSTRACT

In the network-based game where it uses the Internet infrastructure, the implementation is possible
with the various methods. Such Applications are developed in the multi-tired architecture. There are
many cases for the server to be separated from the hardware or the software. In this case, a lot of
applications make the distributed process possible and are made as the multi-tiered architecture to develop
the reusability of the existing software module. Especially, it is mostly general to separate for the case
of a database server to a new tier. One of the important points of multi-tiered server side applications
is security and because of this, it is difficult to share the related data about the design skill. Using design
patterns, it gives help in reusing the existing written-code for the design of the game that needs a lot
of money and time. Design Patterns are related to the software reuse. For the development of more efficient
games, if well-defined design patterns are provided to the developers, then it would make more easy
advanced game API and make possible the framework for the game development based on the API
Through the analysis of the general network-based game currently servicing in the Internet, in this paper,
we discuss how to implement a business logic tier using database system among the server side
- architectures. The main objective of this article is to show an efficient APIs(Application Programming
Interfaces) design method which can be used to manage the data that must be saved to the database
system among the packets that client/server have to be exchange.

Keywords: GoF Design Patterns, Database Design, ERD(Entity Relationship Diagram), Network Game,

Facade Pattern, Command Pattern

1. INTRODUCTION

Currently, in the entire Korean game market, the
network ‘game: holds the ‘major portion. In relation
to a network game, the hardware and software of
the computer are also developed together. The
recent network game production tendency shows
that it supports various character, animation and
sound, and puts the keynote to make the game

players feel the reality[1,2]. Specially, in the case

3% Corresponding Author: Tai-Suk Kim, Address:
(614-714) Dept. of Software Engineering, Dong-Eui
Univ., 995 Eomgwangno, Busanjin-gu, Busan, Korea,
TEL : +82-51-890-1707, FAX : +82-51-890-1724, E-mail
: tskim@deu.ac.kr .

Receipt date': Feb. 1, 2006, Approval date : Mar. 14, 2006
* Insitute of Telecommunications Information, Dong-Eui

Univ. Korea. (E-mail: seatree@deu.ac.kr)
" Dept. of Software Engineering, Dong—-Eui Univ. Korea.

of developing multimedia-applied games like the
network games serviced recently, many staff are

added in its development. To design and implement

..the. network game, many domestic companies

apply the object-oriented paradigm.

The Internet is popular at the present, and many
companies service various contents on the World
Wide Web. The network game service is the best
method to form a large-scale community. In the
Internet, a lot of applications take the client/server
architecture as a basis, it is important to develop
basic APIs that can save the needed data for the
each client information to be saved in the database.
However, such APIs design technique that is related
with the database system is difficult to share due
to the intellectual property protection. Moreover, it
is not easy for each other design and implementation

method to be compared because of the variety.



Design of Network-based Game Using the GoF Design Patterns 743

It uses design pattern of object-oriented struc-
tures by using UML(Unified Modeling Language)
to take advantage which is an object-oriented
language. One of the methods to measure the qual-
ity of object-oriented systems are that foretell how
much developers paid attention to cooperation
methods among objects.

While the software is designed and implemented,
as we know, it is useful to reuse the existing code
at the design and implementation of related data-
base APIs considering the time, charge, and effi-
cient aspect[3]. This paper suggests design pat-
terns of GoF(Gang of Four) on server side APIs
design techniques to deal with a database system.

The application is made for the client/server ar-
chitecture to be separated into two applications ;
the first one charges the request of the client and
the second one, a server, manages the request to
come in from the client(4,5]. It is an important
technique to the architecture organization of the
server in dealing with the client’s various requests
efficiently. In the network-based game archi-
tecture that is composed of the hardware, it is
needed technique that is related with database
server that can save the important data of the client
and is also the technique of the related with UML
for design of the game application. This paper
shows the architecture method of the server. The
database design techniques and the applying de-
sign patterns are related server side application
implementation. We use the C++ compiler for the
implementation and suggest Facade, Singleton and
Command patterns for efficient game design.

2. MATERIAL AND METHODS

2.1 Network Synthesis

In the multi-user network application, the reus—
ability is considered for additional development and
the easy maintenance[6]. It is efficient for that only
if the interface of the various server applications

may not related each other. In the network syn-
thesis of the applications, There are P2P(Peer to
Peer) based system, client/server-based system,
distributed server system, and Hybrid server sys-
tem that is mixed with the others.

Client/server describes the relationship between
two computer programs in which one program, the
client, makes a service request from another pro-
gram, the server, which fulfills the request{7]. The
basic frame is the multi-tiered architecture of the
client/server-based system. Fig. 1 shows an ex—
ample of the multi-tired architecture.

The architecture has the following advantages

over one-tiered and two-tiered architectures:

- Makes wider data more readable.
- Easier approach through the network.

- Data can be reset more easily.

Table 1. shows the summarization of logical
software and physical hierarchies for each tier’s.
In almost all sever-side applications, client/server
architecture is selected partially from the whole. In
the server-side application, all clients send the in-
formation that has to be share. After that, the serv-
er sends the result of the process to the clients on
the basis of that input.

In the integrated network for the game applica—
tion, the server has to deal with the packets coming
from the connected clients at the server efficiently.

The processing about the requirement of the cli-
ents often depends on the information that the

server has.

Middle Tier

Fig. 1. An Example of the multi-tired architecture.



744 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 6, JUNE 2006

Table 1. Logical Software & Physical Hierarchy

ICate— . : Physical
gory nglcal software hierarchy hierarchy
1 . Receive data, or processin .
. |Presentation . e Client
tier (User Interface, Window, Screen
2 Business . . Application|
tier logic Business rule achievement Server
3 Data & : Database
tier | Application Data deposit and access Server

It is needed the synchronization technique to
solve the deadlock problem should be examined
while the server side process the information that
the client shares in the implementation of the server
application[8].

The distributed server architecture is suitable
for massive network applications. It has the archi-
tecture that is the same as Fig. 2. In the distributed
server architecture, the client applications try to
connect each of the server groups and then ex-
change each other. After that, the job load of server
can be divided into several servers and it is effi-
cient to reduce the load.

Among the server side architectures, the database
system architecture you adopt is also important. Part
of tasks of different servers accomplished with one
database system and other work can share the task
of the game server and make the client to charge.
We can apply a distributed database or parallel data-
base system to the data base architecture of a net-
work server which is composed of several dis-
tributed servers, However, the distributed database
system and the parallel database system stay at the
development step yet, and it is also difficult to find

a system worthy of referring to.

2.2 GoF(Gang of Four) Design Patterns

To help produce quality software is the goal of
software engineering. Reusability is the basic issue

in software engineering.

Fig. 2. The server side application architecture of
the distributed server.

It is easy to find the already-written code for
searching and other basic data structure
manipulations. To make complex software, using
design patterns is very efficient[9].

Using them makes the software developers use
other people’s excellent idea easily[10]. The devel-
oper can use a software design idea again using
the design patterns. There are various patterns to
design the object oriented software, but in this pa-
per we show what GoF(Gang of Four) design pat—
terns proposed.

GoF design patterns propose are classified as 3
pattern areas largely. They are Creational Patterns,
Structural Patterns, and Behavioral Patterns. The
Creational Patterns offer the inclusive method that
determines the generation method of the object.
The Structural Patterns uses a succession techni-
que for forming bigger architecture. Finally, The
Behavioral patterns offer organization, manage-
ment and combination methods.

This paper shows one of the structural patterns,
Facade pattern, to be applied to the implementation
of APIs about a database processing of a network
application. The intent of this pattern is to “Provide
a unified interface with a set of interfaces into a
subsystem. Facade defines a higher-level interface
that makes the subsystem easier to use”. We also
suggest two creational patterns on the APIs
design. One is Singleton Pattern. It is useful to
“Ensure a class has only one instance and provides
a global point of access to it”. The other one is
Command patterns. The command pattern is ex—



Design of Network-based Game Using the GoF Design Patterns 745

cellent for supporting undo. The idea is to have a
base class that defines a method to “do” a com-
mand and another method to “undo” a command.
We need a lot of the software technique at the
implementation of the application to deal with the
date of the server. To use UML is quite useful for
the software design[11-13]. Especially, in the ap-
plication of the interface that exists into the class
of the separate way with a database server, the
Facade pattern is very useful. We examine the ap-
plication of some design patterns based on the da-
tabase system and present the plan to construct
the efficient database server that uses those.

2.3 Example of the Game Database Design

Entity Relationship Diagrams(ERDs) illustrate
the logical structure of databases[14]. The ERD of
the database system analyzed and designed on the
basis of the existing game is like Fig. 3.

In the diagram, the “Character” entity that man-
ages the various characters that operated by the
game users. And the employee entity has a “jid”
attribute in the job entity as the foreign key to re—
cord the job of the Character entity. The “c_item”
entity that saves the data concerning characters
has the “item” entity to record the each game user's
items. Fig. 4. shows that the automatic database
schema generator in the ER-Win creates data-

base-specific tables for the saving the game data.

member Cnaracter O]

mid: varchar(10) u:- lm‘ s_id: Im

nm: vaschar(12) [0— — —— —— —— == = — ) — Job_step: int

pw: varchac(10) frinnd Jid: im max_level: im
desc: varchas(200)

on
oot int
cid: Int

mld: varchar(o)

on_flag: varchar(t) |
tom_class
icno: int
cache_fiag: varchar(t)
om: varchari)

cur_lavel: int
desc: varchar(s00)

uest
gno: int

ino: int

dfncPwr: int

am: varchar@o) m  int
icno: int mgcDfncPwr: int
iR et
avoldRt: fnt
handSkRl: int
rmavePaer: Int
JumpPer: int

nm: varchar(@0)
sort: &

ak_flag: varchar(1)

quest step
qsno: Int
ano: int

lukc int
weas_flag: varchar(1)
cur_num: int

end_step: Int
ok_flag: varchar(t)
desc: varchar@D0)

max_num: int

Fig. 3. Example of a ERD of a network game.

nyaql>
Databaze changed
jysql> show tabless é&j

! item_class H S
1 Job : o

t member 1
! mychar 3
! party H
i quest '
! quest_step i
t skill

_____________________

13 rows in set (8.88 sec)>

hysql> select = £rom mychars
e i

Fig. 4. Creation schema set in the MySQL.

The primary can be a normal attribute that is
guaranteed to be unique. We defined a table’s pri-
mary key in the CREATE TABLE statement.

2.4 Advanced Database Design

Additionally, the one of important thing that
should be considered to design the database sys-
tem is the interface with the legacy system. The
database server of the game and the legacy sys-
tem(Other MIS, Internet system etc...) should be
the integrated system and it could be more efficient
system once built on[15-18]. But this development
method may have some defaults in cutting down
expenses and saving time. In the light of the data-
base design and the effective use of the data, the
design through the careful consideration about the
interface with other systems must be followed.

3. APPLY DESIGN PATTERNS TO IM-
PLEMENTATION OF DB SERVER

Applying UML(Unified Modeling Language) to
the implementation of the complex software just
like implementation of server side database APIs
(Application Programming Interfaces)-gives a lot
of advantages[19-22]. In this chapter, we will fig-
ure out the design patterns that can be applied to
the design of server side database APIs.

3.1 Apply to Facade Pattern

To record the data received from clients into the



746 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 6, JUNE 2006

database, many attempts have occurred to access
the resource of the database from several objects
that compose the server. The reason to apply the
fagade pattern like Fig. 5 into the implementation
of database server is to minimize the dependency
of the sub systems in each design steps. By apply-
ing the facade pattern to the objects, a unified in~
terface can be made.

In general, to access the resource with database
system, developers use the ODBC(Open Database
Connectivity), JDBC of Java, or other APIs to ac-
cess the database resource. The object related to
the implementation of server side APIs that devel-
opers want to implement can directly access the
particular object in SQL_Server of Microsoft.
However, most of the database applications may
receive the data and process it through the simple
query without any detailed internal information of
the database system. It is no need to know how
the internal database system works.

The class that works as a unified interface role
can be defined with the facade pattern. This pattern
provides the most basic required interface to use
the database for its users, and the internal database
system can be operated like buffer pool, query plan,
cash, etc...

It is impossible to use the system while under—
standing the application development and the de-
sign of the complex database system. It is too de—
pendent to access the related object whenever each

Database
— resuit:RecordSet

+Database8
+getResult!

process
Process
! Butfer pool | ggletg;
Shared —
[LLog buffer | | Lock table | ﬁanczgsesr
~
~

database
write
1OCess

log writer checkpoint
rocess rocess

log. disks

data disks

Fig. 5. Example of a Fagade pattern.

object of the database server application is needed.
The applicatioﬁ of the fagade pattern to solve this
problem can reduce the coupling with the database
system.

‘ That is, in case all the interface of the database
system is open to the public, frequent method calls
may happen but by providing the simple integrated
interface and implementing the residues internally,
developers can get some advantages to practically
reduce the frequent calls between the application
and the database system.

3.2 Apply to Singleton Pattern in Facade
Pattern

In the previous design that applies the fagade
pattern, if object related to the database system is
one, developers should consider making the facade
object as singleton. The singleton pattern applica—
tion of DB manager class is able to increase
cohesion. To manage the creation of the object de-
signed with facade itself is convenient in many as-
pects including maintenance.

3.3 Apply to Command Pattern

The server analyzes the data and properly proc-
esses the requests sent by clients. A general method
to analyze and process the client’s request is to use
a parameter. Generally, the code is written as follows.

void parseCommand() {
int command;
if(command != -99) {
switch(command) {
case 9 : login();

break;

case 8 : loadCharacter();
break;

case 7 : saveCharacter();
break;

/* Process additional command */
default: greeting();
}




Design of Network-based Game Using the GoF Design Patterns 747

A pattern that is used to process a job in accord-
ance with the value of a particular variable is the
command pattern. Consider the code above. We
can notice the login process when the special client
first logins the game server, the process to read
the information related the user's game character
from DB and the process to save the user’s data
to DB.

These methods are able to be implemented to
inherit the abstract command class like login(),
loadCharacterCommand(), saveCharacterCommand
(). Command in Fig. 6 shows those classes that
inherit the abstract command class.

Each class implements the virtual excute()
method inherited from parent Command class. The
code to use this command pattern is generally
written as follows.

void parseCommand(Command #*p) {
Command *command;
switch(p->type){
/* Process general login*/
case LoginCommand:
command = new LoginCommand();
break;
/*load the character informations */
case LoadCharacterCommand:
command = new LoadCharacterCommand();
break;
/* save the character information */
case SaveCharacterCommand:
command = new SaveCharacterCommand();

break;
Result result = command->excute(param)
intetface
Command
L e
e ¢ T~
LoginCommand LoadCharacterCommand SaveCharacterCommand
+excutevoid 4. +excute void ’: +excute:void 3,;

Fig. 6. Command pattern diagram to make various
packets.

By using the command pattern in the business
logic implementation of the server application, the
object calling the operation and the object manag-
ing the operation implementation method can be
separated. The advantage is that developers can
combine the command and make anther command
and insert the new command easily.

In case of communication with additional objects
such as a User class in the figure 6, if it is not
an adopted command pattern in design, there are
some problems that it is necessary to modify par-
seCommand() method, or add to a new class re-
lated to methods that deal with the logic.

Figure 7. shows that how the command pattern
is used to modify of a little to process the logic
related to User object.

We recommend adding the new classes to proc—
essing user information and saving user data re-
lated to User object in the diagram. At this point,
a developer has advantages that less effort is need-
ed to be made to modify the code appending neces-
sary class as compared with the implementation
that modifies the existing parseCommand()
method.

4. CONCLUSION

In this paper, we have designed the database of
the game application built on to manage the work
of the game effectively. We have also mentioned
that the design patterns suggested by GoF can be

DBHandler Nierlare Protocokantier I
Pagade G "
pattern for AngtanceDEMandle 1. putint
the-OB f + €0 100 YOI 2« -
Management, fnggmiétema W«“‘*ﬁ o «makpCammadvoid
SRgtRandereds dy
LRI R M
i e T —
LosdCharacterC.. I SaveChesacterC... l Loging UsorGate I

) | 1
“excuteveld ;‘i’ rexciteinid Ei «gxiutexoig %

]
sexcitsvoid %

< 5.1 E
5.1 0.1 Adding new User and M
Crusacter UserGetCommand
class to the diagram

Fig. 7. Putting Facade & Command pattern
together.



748 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 6, JUNE 2006

effectively used to the design of APIs related to
the implementation of server side application.
Various design patterns are applied for the game
application to be effectively designed.

The facade pattern, a type of structural patterns,
has the advantage of providing the consolidated in-
terface to use database. The command pattern, a
type of behavioral patterns, used to process the re-
quests received from the clients, has the advantage
that the distributed development is possible by proc—
essing the request data into the capsulated object.
Furthermore, the singleton pattern applied to create
the object that manages the database also showed
the fact that the memory can be effectively used by
guaranteeing the uniqueness of the instance.

The Application Wizard is automatically in-
stalled based on the existing Visual Studio 6.0 or
Visual Studio .Net when the DirectX SDK 9.x is
installed. It is used to make simple applications that
provide automatically some classes related DirectX
API and simple GUL

But provided classes using DirectX API by the
Application Wizard have some problems of many
object variables and methods that are not needed
to implement an ideal game system. The problems
also happen when making DirectX components
used in games. To avoid these problems in the
analysis and design steps, various design patterns
are studied to make game. frameworks related to
special games like Star Craft, Lineage, etc...

We show that such GoF design patterns are use-
ful to the game application design. In the network
game design, by using GoF design patterns, it
makes easy to design related game API and to mod-
ify already written codes. The advantage is that de-
velopers can make a new function and remove the
existing function and modify the function easily.

We suggest some design methods using the GoF
design patterns here, They have some advantages
that provide more advanced design and easily re-
useable architecture than the old design methods.
We have also studied and listed verified design
patterns. When new game developers use the sug—

gested design patterns more efficiently, They are
able to easily maintain, do refactoring and docu-
ment the already existing game system.

5. REFERENCES

[1] David H. Eberly, 3D Game Engine Designe,
Morgan Kaufmann, 2001.

[ 2] Mary Firestone, Computer Game Developer
(Weird Careers in Science)(Library Binding),
Chelsea House Publications, 2005.

[ 3] Erich Gamma, Richard Helm Ralph Johnson,
Hohm Vissides, Gof's Design Patterns,
Pearson education Korea, 2002.

{4] Charles Patzold, Programming Windows
Fifth Edition, Microsoft Press, 1998.

[5] ©Microsoft, Microsoft SQL Server 2000
Developer, Microsoft, 2000.

[6] ©Sun Microsystems, sun educational serviecs
Advanced Java Programming SL-300, SunSoft
Press, 2000.

[ 7] Soon-Kak Kwon, Jong-Soo Kim, Tai-Suk Kim,
“An Implementation Avatar Chatting System
for Network-Based Multi-User Environment”
EALPIIT2003 National University of Mongolia,
Ulaanbaatar, Mongolia July 6-9, pp. 119-123,
2003.

[8] James Gosling, Frank Yellin, Java Team, The
Java Application Programming Interface
Volumel, Addison Wesley, 1996.

[9] Toyaki Tomura, Kiyoshi Uehiro, Satoshi
Kanai, Susumu Uamamoto. “Object-Oriented
Design Pattern Approach for Modeling and
Simulating Open Distributed Control System”
Proceedings of the 2001 IEEE International
Conference on Robotics & Automation Seoul,
Korea, May 21-26, 2001.

[10] John Lewis, William Loftus, Java Software
Solutions Foundations of Program Design,
Addison Wesley, 1998.

[11] Toyaki Tomura, Kiyoshi Uehiro, Satoshi
Kanai, Susumu Uamamoto. “Object-Oriented



Design of Network-based Game Using the GoF Design Patterns 749

Design Pattern Approach for Modeling and
Simulating Open Distributed Control System”
Proceedings of the 2001 IEEE International
Conference on Robotics & Automation Seoul,
Korea, May 21-26, 2001.

[12] Dr. Raymond J. Toal, Robert G. Hayes. “ATS
Software Design Patterns” IEEE, 2001.

[13] Craig Larman, Applying UML and Patterns,
Prentice Hall PTR, 2001.

[14] Avi Silberschatz, Henry F. Korth. S.
Sudarshan, Database System Concepts Forth
Edition, McGraw-Hill, 2003.

[15] Jong-Soo Kim, Oh-Jun Kwon, Tai-Suk Kim,
“APIs Design in the side of the Database
Using Design Patterns for Online Game,”
Proceeding of the Korea Multimedia Society
Spring Conference, 2005, Vol. 8, No.l, pp.
847-850, May 2005.

[16] Jong-Soo Kim, Tai~Suk Kim, “A Study on a
Database Design for the Multi-User Online
Game,” Proceeding of the Korea Information
Processing Society Spring Conference, 2005,
Vol. 12, No. 1, pp. 361-364, May 2005.

[17] Jong-Soo Kim, Tai-Suk Kim, “The Study of
the APIs Design in the Internet Application
to Construct a Database Server,” IEEE-
HealthCom2005 7th International Workshop,
pp. 335-338, June 2005.

[18] Jong-Soo Kim, Tai-Suk Kim, Oh-Jun Kwon,
“The APIs Design for the Database Manage-
ment of the Network Game Using Design
Patterns,” Journal of Korea Multimedia
Society, Vol. 9, No. 1, July 2006. _

[19] Jong-Soo Kim, Tai-Suk Kim, “The Creational
Patterns application to the Game Design using
the DirectX,” Journal of Korea Multimedia
Society, Vol. 8, No. 4, pp. 536-543, Feb. 2004.

[20] Jong-Soo Kim, Tai-Suk Kim, “A Study on
the Effective Class Composition for the
Various Game Character Design,” Proceeding

of the Korea Information Processing Society
Fall Conference, 2005, Vol. 9, No. 1, pp.
313-316, Nov. 2005.

[21] Jong-Soo Kim, Tai-Suk Kim, “a Study of the
Template Method for Various Behavior of the
Game Characters,” Proceeding of the Korea
Multimedia Society Fall Conference, 2005,
Vol. 8, No. 2, pp. 69-72, Nov. 2005.

[22] M. McNaughton, M. Cutumisu D. Szafron and
J. Schaeffer, ]J. Reford, D. Parker. “SciptEase:
Generative Design Patterns for Computing
Role-Playing Games” Proceedings of the 19th
International Conference on Automated Soft-
ware Engineering(ASE04), 2004.

Jong-Soo Kim

He received his B.S. degree from
Pukyong National University in
1992, his M.S. degree from the
department of Computer Engi-
neering, Busan University of
Foreign Studies in 2003, and his
Ph.D. degree from the depart-
ment of Software Engineering, Dong-eui University in
2006. He has worked at the Institute of Telecommuni-
cations Information in Dong-eui University as a
post—doc. His current research interests are network
game design and web applications.

Tai-Suk Kim

received the B.S. degree in
Electronic Engineering form
Kyungpook National University,
Korea, in 1981 and the M.S. and
ph.D. degree in Computer
Science from KEIO University,
Japan, in 1989 and 1993,
respectively. Since 1994, he has been a faculty member
of the Dongeul University, where he is now Professor
in department of Computer software engineering. His
reserch field has been in information system, internet
business, network game and NLP.



