JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 6, JUNE 2006(pp. 750-761)

A Design Technique of Component Framework Based
on Framework Reference Model

Eun-Sook Cho'

ABSTRACT

As CBD technologies and researches have been matured, component framework as a larger reuse unit
than component is being introduced. Especially issues related with adaptation and integration of compo-
nents in CBD are being raised as a new research topic. The component framework is given as a solution
to resolve these issues. However, current approaches don't suggest a sound and comprehensive reference
model and development process applying reference model. In order to develop practical and stable compo—
nent framework, reference model and concrete guidelines are essential elements. In this paper, we propose
a generic reference model integrating existing reference models and a design technique of component
framework based on it. Especially, we propose concrete and pragmatic guidelines such as how to design
component framework architecture’s view and style, how to design commonality and variability of compo-
nent framework, how to design macro workflows among components, and so on. We believe that the
proposed reference model becomes basis for component framework development, and the proposed design

technique will support reliable and effective development of the component framework.

Keywords: CBD, Component Framework, Reference Model, Macro Workflow

1. INTRODUCTION

It is now clear that component-based develop—
ment is going to be a new technology in software
reuse. Various methodologies, tools, and platforms
(EJB, NET, etc) supporting CBD have been
introduced. A component is a non-trivial, nearly
independent, and replacéable part of a system that
fulfills a clear function in the context of a well-de-
fined architecture. A component conforms to and
provides the physical realization of a set of inter-
faces. However, current CBD approaches have
some limitations. One of the limitations is overhead
for the component consumers to identify and in-
tegrate the right components[4,5]. To overcome

¥ Corresponding Author : Eun-Sook Cho, Address : (131~
702) 49-3, Myeonmok-8 Dong, Jungnang-Gu, Seoul,
Korea, TEL:+82-2-490~-7562, FAX': +82-2-490-7396,
E-mail : escho@seoil.ac.kr

Receipt date : Mar. 7, 2006, Approval date : June. 2, 2006
* Dept. Of Software, Seoil College

% This work was supported by the 2005 Seoil College
Research Fund.

this difficulty of locating the right components, the
concept of component framework or infrastructure
was introduced [4]. The other is overhead for the
component developers to reuse or assemble. Many
component developers need larger reuse unit in
practice. In that, a component framework is defined
as a large reuse unit that contains a set of related
components[2]: The granularity of component
framework is larger than of a component. A com-
ponent framework contains one or more compo-
nents as well as relationships or workflows among
components.

The concept of cornponeﬁt framework was in-
troduced as an application framework in[2], and a
component infrastructure in PLSE[4]. However,
the reference model of component framework has
not been given enough research. Without a
well-defined component framework reference
model it is hard to have a good development
process. The reason is that activities or in-

structions of development process are determined

A Design Technique of Component Framework Based on Framework Reference Model 751

according to the elements that are included in ref-
erence model. Therefore, a comprehensive refer—
ence model should be well defined.

Because the component framework includes sev-
eral components, different types of component in—
terfaces, component collaboration, variation points,
connectors, and so on, a component framework
reference model should cover these elements.
However, current reference models do not cover all
of these elements. As a result, some of the elements
are not considered in the development process of
component framework. Therefore, a compre-
hensive component framework reference model is
needed.

Frameworks can not only speed-up component
development and adaptation but they are also well
suited to abstract and implement component
collaboration. In order to maximize of component
framework, we should reflect relationship and
workflows related with component collaboration
during componént framework development process.
However, current approaches deal with few macro
workflows among components. To overcome this
limitation, a comprehensive framework develop-
ment process is needed.

In Section 2, we will introduce existing reference
models of component frameworks and development
methods. In Section 3, we describe a compre-
hensive reference model for component framework.
Overall architecture of reference model and con-
cepts of elements are described. We define a design
method of component framework in Section 4.
Section 5 describes traceability of artifacts. In
Section 6, assessment results are described. We

end this paper with concluding remarks.

2. RELATED WORKS

Several component frameworks have been pro-
posed so far. However, very few of them explicitly
focus on the precise definition of a reference model.

2.1 PuLSE(Product Line Software Engineering)

PulLSE methodology is developed for the purpose
of enabling the conception and deployment of soft—
ware product lines within a large variety of enterprise
contexts[7]. A reference model of PuLSE method-
ology does not cover all characteristics of component
frameworks. It shows some elements of reference
model such as control flow, control flow variation,
component, logical component group, meta-con-
dition, and one or two its variations. Therefore, this
reference model does not provide the comprehensive
set of elements. Beside, the precise definitions of
these elements are not defined. This methodology fo-
cuses on how to customize or combine components
or products in application development. Therefore,
modeling guidelines for component framework are
not defined adequately. For example, gaps occurring
from component assembly are not analyzed and the
ways to define and design connectors to fill these

gaps are not considered.

2.2 SE| Product Line Framework

The approach identifies foundational concepts
underlying software product lines and activities to
be considered when creating a product line[6]. The
listed practice areas comprise an extensive set of
competencies and issues necessary to consider for
successful adoption of product line based reuse.
The viewpoint supports product line planning and
management, rather than gives concrete in-
structions on implementing specific engineering
tasks. Concrete guidelines to build framework,
such as instructions related with characteristics of
component framework; how to design connector
types, how to represent macro workflows, and how
to apply types of component interfaces in compo-
nent framework building process, are rarely de-
fined in this work. That is, instructions related
with characteristics of component framework; how
to design connector types, how to represent macro
workflows, and how to apply types of component

752 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 6, JUNE 2006

interfaces in the component framework building
process. Core assets are those assets that form the
basis for the .software product line. Besides, SEI
product line framework gives no obvious definition
on elements for solving the mismatch problem be-
tween interacting components and specific types of
component interfaces.

2.3 The UML-F Profile for Framework Archi-
tectures '

UML-F is an UML extension that supports
working with object-oriented frameworks and al-
lows the explicit representation of framework var-
iation points[9]. A framework, UML-F assumes, is
a collection of several fully or partially im-
plemented components with largely predefined co-
operation patterns between them. This framework
implements the software architecture for a family
of applications with similar characteristics, which
are derived by specialization through applica-
tion-specific code. However, elements are not ex—
plicitly identified in this model and no precise defi-
nition for the elements is suggested.
Engineering

2.4 Reuse-Driven Software

Process

Reuse-driven Software Engineering Business
(RSEB)I[8] is a use-case driven systematic reuse
process. The RSEB integrates traditional object-ori~
ented analysis and design with feature-oriented do-
main analysis (FODA) method. In this methodology,
commonality and variability features are described
through feature model. This process provides how
to identify commonality and variability from feature
model and use case model's variation points.
However, this process mainly focuses on functional
variability because it is based on use case model.
Also, macro workflow between inter-components
and the skeleton architecture description of compo-

nent framework are not considered. Furthermore, the

way to bridge occurring gaps in combining different

components is not presented.

3. FRAMEWORK REFERENCE MODEL

In this section, we propose a comprehensive and
practical reference model of component frame-
works. A component framework consists of sev-
eral elements; skeleton architecture, component in—
terfaces, member components, inter-component
relationships, and connectors as Fig. 1.

As shown in Fig. 2, a component framework
should have one or more standard skeleton
architecture. One or more interfaces and compo-
nents that conform to the interfaces should belong
to a component framework. A framework can have
zero or more connectors that connect mismatching
components. Three types of component interface
and five types of connector are defined in this
framework. A framework also has macro work-
flows, which is a sequence of dependency relation—
ships over multiple components to carry out sys-
tem level service.

Our framework supports variability mechanism.

Variant is a possible solution (instance) for a var-

lation point and, typically, a set of variants exists

for a variation point[3]. In our framework, we con-
sider three types of variability within the scope of
a component as attribute, logic, micro work-
flow[11]. And for the framework level, we consider

macro workflow variability.

Provided]n/er[a\ce

Outponr Connector Inport pe ¥y
quired Interface
£ v ¥ 's {

"®_ Busim:sg|

Component

Component

Fig. 1. Component Framework.

A Design Techniaue of Component Framework Based on Framework Reference Model 753

Architectur:
-pl Viewtype

Provided
Interface

Data F i
[Transformen | Transforme: Adapter

1 "
Handler I l Ada;:tw l

Fig. 2. Meta-model of a component framework.

3.1 Skeleton Architecture

A skeleton architecture is a general architecture
of the target component framework. A skeleton ar—
chitecture is distinguished from application archi-
tecture, because it is the architecture for the core
part. Skeleton architecture provides standard ref-
erence architecture that will be instantiated for the
target application. This is like a core set that needs
to be enhanced to fit ones specific purpose through
the incomplete part (hot spot) of the architecture
as in Fig. 3.

Skeleton architecture is an important element
that must be pre-designed because a component
framework is a semi—completed application. We al-
so use component framework to speed up the de-
velopment of an application and pre—-designed skel-
eton architecture supports this benefit of using a

component framework.

3.2 Three Types of Component Interfaces

Current research works in CBD do not agree on
the types of component interfaces and the names
of the interfaces. This makes it difficult to define
a framework reference model and framework de-
velopment process. Hence, we define three types of
interfaces as in Figure 1: provide interface, required
interface, and customization interface.

Provide interface is a set of services provided by
a component. These services are offered to the client
in the form of operations. Required interface is a set

of external services invoked by a component, i.e. a

Fig. 3. Skeleton Architecture with Hot Spot.

collection of external operation signatures used by
the current component. Customization interface is
a set of operations invoked to set variants to varia-
tion points. Intra-component variability is designed
with this customization interface, and is used to tai—
lor components for each application. Operations in
a customization interface are mostly invoked only

once per customization at deployment time.

3.3 Macro Workflow Model

A workflow is a sequence of method invocations
between objects or components. A workflow with—
in a scope of a single component is called micro
workflow. A workflow outside the component and
that acts as a mediator is called macro workflow.
That is, a macro workflow is a sequence of method
invocations over multiple components to carry out
a system operation. Macro workflow is an im-
portant element because functionality serviced by
framework is modeled through this element. Fig.
4 shows micro workflow and macro workflow in-

side a component framework.

3.4 Connectors

Locating a component that exactly matches to
the specification of the component required is vir—-
tually impractical, because the component producer
is often not the same as the component consumer.
To overcome this difficulty, we need a mechanism

that neutralize or mediate the unmatched aspects

754 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 6, JUNE 2006

Logic Layer
<<System Comp.>> <<System Comp>>
Ly LSS
VP il Tt i e
séf case . ' op#(vahe _\
e, =
sysOp2-1(...)
v 4s0m.) Data Layer

<Business Comp> <<Business Comp >
sysOp3(.\ =) b1(.. E
5 [casei] 2(value)
wtVP(case -f\ 53_2_.?'1 ' "3 g\g.. u
© S br3 ualuc)
[eaself : w31y X {
L o72¥: § 3 s I [
> ST ssop3-2(]) WQTC > —C
H Cass = eseoeeee- # Micro Workflow ——> Macro Workflow Variation Foint

Fig. 4. Macro Workflow.

of the .components. We call such software module
or mechanism ‘connector’[4]. We define some of
symbols and terms to use iIn connector
specification.

In Fig. 5, a target component is a candidate com—
ponent that a client component wishes to use with
a gap filling mechanism such as connector. We
consider five types of connectors; data transformer,
functional transformer, interface adapter, workflow

handler, and exception adapter[10].

4. A DESIGN TECHNIQUE OF COM-
PONENT FRAMEWORK

In the previous chapter, a reference model of
component frameworks has been proposed. In this
chapter, we propose a systematic design technique
to develop component frameworks that conform to

required interface provided interface

Out port In port

Fig. 5. Symbol Definitions for Connector.

the proposed reference model.

4.1 Activity 1. Framework Requirement Es-
tablishment

Non-functional requirements are as important
as functional requirement in developing component
frameworks because frameworks include non-
generic

functional elements such as the

architecture.

Step 1. Extract functional requirements.

Functional requirements are identified through
use case modeling. Each use case can be common
or similar among similar applications. Use cases
describe system operation characteristics. Fig. 6
shows a use case diagram of rental manage-
ment(RM) framework.

Step 2. Write use case descriptions for each

use case.

We first write generic workflows for use cases.
Use case descriptions are actor-driven or event—
driven. In case of actor-driven, the first message
flows should be initiated by actor. Besides, the first
message flows should be initiated by system in

case of event-driven.

A Design Technique of Component Framework Based on Framework Reference Model 755

§2 " P-AtiribuelCustomer ID)

_\‘\\‘ Register Customer v ~
h Ty T S {VPLogic|Notify method} Timer
Manager ™. (\ J Notify Delay
o e
M Resene Titleinb p— “
/" L 2 L
N D — - —‘i
/

Customer

Fig. 6. Use Case Diagram of RM framework.

Step 3. Identify variation points.

Although functionality of common use case is
the same, each family member can have different
features. These different features are identified as
variation points. Variation points can be variant at-
tributes, variant logics, or variant workflows.
Identified wvariation points are marked with
stereotypes. Step 3 can be progressed in parallel
because variation points can be identified during
use case descriptions. In Table 1, RRN means
Rental Registration Number, and SMS means
Short Message Service. In case of Register
Customer’” use case, Customer ID is variation point.
That is, Customer ID can be used differently ac-
cording to the applications such as RRN or
UnitID+Serial#.

Step 4. Extract non-functional requirements.

Framework occupies core part of an application.
Therefore, framework’s quality attributes have in-
fluence on the quality of overall application. These
non-functional requirements affect selection of ap—

propriate components a framework requires from
available COTs(Commercial-Off-the Shelf) com-~
ponents. Non-functional requirements are identi-
fied from family members’ non-functional require-
ments. Table 2 shows the non-functional require-
ment of RM framework. For example, there are
availability, security, performance, reliability, and
so on. Table 2 shows only availability part among

non-functional requirements.

4.2 Activity 2. Skeleton Architecture Design
(Reference Architecture)

A skeleton architecture of a framework is the
generic and common structural views as well as
behavioral views of the applications. Hence, the
skeleton architecture is typically a fraction of the
entire application architecture since the framework
is only a large portion of the application rather than
the entire application itself. The skeleton archi-
tecture makes frameworks quite distinct from

components.

Step 1. Select architecture view type and
styles.

Quality attributes of non-functional require-
ments are main inputs to select architecture view
type and style.

An architect can either select one architecture
view type or various architecture view types. If he

selects various architecture view types, he can

Table 1. Variation Point Identification Table of RM framework

Use Case Variation Point | Variation Type Variants Scope Default
Register Customer | Customer ID Attribute {RRN, UnitID+Serial#} Open RRN
Notify Delay Notify Method | Logic {E-mail, SMS, Post-mail} Closed E-mail

Table 2. Non-functional Requirement of RM framework

Quality Attribute

Details

Provide 24-hour services

Availability

Support global access

Support a large number of concurrent users

756 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 6, JUNE 2006

merge various architecture view types into the
component framework architecture. To select ap-
propriate architecture view types and styles, we
select appropriate architecture view types and
styles by referencing values described in[1]. Also,
additional architecture types and styles can be se—
lected from stakeholders’ focus. If stakeholders
want to represent decomposition of overall system,
decomposition style can be selected additionally.
After selecting architecture view types and styles,
an architect should describe design rationale for
those.

Table 3 shows the architecture view type and
styles for RM framework. In this example, view
type is Module type, and architecture style is de-
composition and layered style.

Step 2. Design elements to be included in

skeleton architecture.

We identify elements to be assigned into skel-

eton architecture. An element can be a module, .

component, or subsystem according to architecture
types and styles.

Step 3. Establish relationships among elements.

Identified elements are deployed in a part of ar-
chitecture. There are relationships among elements.
According to architecture.view types and styles,
needed relationships should be identified and de-
signed. For example, there are relationships be-
tween components of higher level and components

of lower level as in Fig. 7.

Table 3. Selected Architecture View Type and
Styles for RM framework

View Style Design rationale
type
For availability, reliability,
Decomposition |performance. And can also
Module get modifiability.
For security, reliability. And
L d . ’ e g
ayere can also get modifiability.

i,
o i
Presxiation Layar Cliet
e e
Logic Layer §ORY L Iventory.
iMa'ngﬂ)ﬁMa'agrf
L AT v
DataLayer [R/ | inventory. Csorer, | Saf | | Lon
DM . DM . : DM | i DM | i OM |
> Cortrol fiow

Fig. 7. Layered Style Architecture.

4.3 Activity 3. Locating Components
Step 1. Select components.

In order to select components, we see which
components correspond to functional and non-
functional requirements described in framework
requirement specification.

First of all, functional requirements should be
the same between available components and de-
sired components. And then, interface specification
should be satisfied. Third one is to consider

non-functional requirements.

A={Ay, Ay, -+, An}: A set of available components
D={Ds, Dy, *-*, Dm} : A set of desired components
F={C), Cy, -, Co } 1 A set of selected components

If D € A, full match is generated. Here, D A
means that functional requirements, non-func-

tional requirements, and interface specification of

- Dy are equal to those of A;. And then, the A; is as—

signed into F.

Elseif AND = dand A-D = G orD-A
= o, partial match is occurred. Here, partial match
means that behavior, non-functional requirements,
or interface specification is not matched com-
pletely. In this case, gap between two components,
A; and Dy, is generated. Therefore, solutions to fill
this gap should be considered. It is executed by ac-
tivity 5.

Else if A N D = &, mismatch is occurred. In
this case, component specification should be pre-

pared.

A Design Technique of Component Framework Based on Framework Reference Model 757

Step 2. Assign components.

Selected components should be assigned to right
positions within a component framework. Accor-
ding to relationships of skeleton architecture, we
connect identified components with each other. In
this process, gaps among component interfaces can
occur. These gaps should be filled with connector
or new cornpo.nent development. Its guidelines are

described in activity 5.

4 4 Activity 4. Workflow Design

Because a framework includes several compo-
nents, we need to consider the inter-component
message flows, i.e. macro workflows.

Step 1. Write design-level use case descriptions.

Use case descriptions of framework are different
from traditional use case descriptions of application.
Each use case includes one or more related
components. Because workflows of each use case
should reflect interface calls among components,
design-level use case description is written by rep-
resenting these interface calls.

Step 2. Describe interactions among components.

By going through workflows described in de-
sign-level’s use case descriptions, we assign mes-
sage flows to component’s interfaces. The unit of
interaction is not an object but a component; mes—
sage flow is not between objects but between
components. Variation points are also depicted in
this diagram.

checkQut() TS
updateBgokitemSt uq’i

updateBookltemSptusDB()
updateCystomerldanList()
updateClistomerLpantistQE()

createlosnDB()

Step 3. Represent variant workflows.

By going through variant workflows described
in design level's use case descriptions, we assign
variant workflows to corresponding component’s

interfaces.

Step 4. Represent dependency relationships.

By tracing interaction diagrams, if one or more
message flows among components are described,
they should be depicted as dependency relation-
‘ships among components. If there are no interfaces
to be connected directly among components, gaps
should be identified and filled through gap analysis
in activity 5. Fig. 8 shows the dependency relation—
ship between components in a component
framework. As depicted in Fig. 8, message flows
between components in a sequence diagram are
mapped into dependency relationships in a compo-

nent diagram.

4.5 Activity 5. Gap Analysis

The activity of gap analysis is to analyze the
gaps identified through activity 3 and 4 and then
to decide whether we develop new components or
use appropriate connectors to fill the gap. In most
cases, using connectors to fill the gap without the
need to develop new components is more economical
way. Determining the mechanism to fill the gap is
in general a heuristic task and so defining a complete
set of decision rules is infeasible and impractical.
However, we suggest the following decision rules
to guide the decision process in Fig. 9.

Out()

®
® LNMg ©

[51] &
LNMgr fiINvMgriiCusMgrf| LNDM HIiNvOMEiCusDME

updateBookltemStatus(Logic Layer

ot
CushMgr)

© odateCugomerLoapli

) updateBookitemStatusDB() Data Layer
chB() jl? la] upd@usoa
INVI l
LNDMa]l_< © v

©_ CusDM

Fig. 8. An example of dependency relationships within a component framework.

758 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 6, JUNE 2006

4.6 Activity 6. Connector Design

A connector is a small software module that
connects two components and possibly provides a

designated functionality to remedy gaps.

Step 1. Define appropriate connector types.

In order to select appropriate connector, compo-
nents’ specifications selected from activity 3 are
compared with workflows among components de-
scribed in interaction diagrams. Also, we determine
appropriate connector types for connectors identi-
fied from activity 5. As described in reference
model of chapter 3, we consider five types of con-
nectors[10]. Table 4 shows some of applicable con-
nector types and roles of these types.

Step 2. Design connector’s ports and algorithms.

In this step, we describe connector’s ports and
algorithms of connector according to identified
connector type. Identified connectors have out port
on one hand and in port on the other hand.
According to connector type and role, connector al—
gorithm may be different. We design connector al-
gorithms according to connector type and role as
shown in Fig. 10.

An example of connector design is depicted in
Fig. 11.

4.7 Activity 7. Writing Framework Specification

A framework specification includes component’s

).
name, component's interface, workflows among

switch(g)

case (contents of g are stable): select New Development;
break;

case (granularity of g is simple & small): select connector;
break;

case (cost/benefit of g is low): select connector;
break;

case (side effect of quality attributes is large): select new development;
break;

case (g is overlapped between different layers): select new development,
break;

case (complexity of g is low): select connector;
break;

default:

{(Note)The g means an abbreviation of Gap.

Fig. 9. Decision Rules for Gap.

Table 4. An example of connector types.

Gap Type| Applicable Connector Type Role

Reformat
Add logic

Gapl |Data Transformer

Gap2 | Functional Transformer

T: Connector Type, C: Connector, R: Role
DT: Data Transformer, FT: Functional Transformer, IA:Interface Adapter,
‘WH: Workflow Handler, EA: Exception Adapter
if (T of C==DT && R of C ==Reformat)
reformat client.request.data type — target. recetve.data type:
else if (T of C ==DT && R of C == Transform)
transform client.request.data semantic —» target.receive.data semantic;
elseif (T of C==FT && R of C == Logic change)
change client. request.logic — target receive logic;
elseif (T of C==FT && R of C == Add logic)
add client.request logic — target.receive.logic;
else if (T of C==FT && R of C == Reset)
reset client.request logic —» target receive.logic;
else if (T of C ==1A && R of C == Separate)
separate client.request. parameters — target. recei ve. parameters;
else if (T of C == 1A && R of C == Combination)
combine client.request. parameters - target. recei ve. parameters;
else if (T of C ==1A &&R of C == Change)
change client. request q
else if (T of C == WH && R of C == Change)
change client.request. workflows — target. recei ve. workflows;
else if (T of C==EA && R of C == Change)
change client.request exception — target.receive.exception,

—» target receive.

else

Fig. 10. Rules for Designing Connector Algorithm.

» Connector Name: LoanListi A
» Connector Type: Interface Adapter
» Connector Role: Separate
» Client Component: LNMgr
» Target Component: CusMgr
» Required Interface of Client Component: vupdateCustomerLoanList(cusID, bookiternID, dateTime)
» Provide Interface of Target Comp searchCy 1D). updateLoanLi D)
» Our port: updateCustomerLoanList(cusID, bookltemID, dateTime)
» In port {: searchCustomer(cusiD)
In port 2: updateLoanList(bookltemID)
» Algorithm:
updateCustomerLoanList(cusID, bookltemID, dateTime)
{ coflect target receive. parameters;
Separate target. receive, parameters:
call scarchCustomer(cusID) through Inport 1;
calf updateloanList(bookItemID) through In port 2;
If success then return trig efse return false; }

Fig. 11. An example of connector design.

components, variation points of a framework, and
etc. This information can be gathered from the
previous activities’ artifacts.

The elements of the framework specification are

as follows:

- Specification related with components con-
tained in a framework; component’s name,
component’s interface specifications, and
component’s constraints.

- Specification related with connectors; con-—
nector's name, connector’'s type, and con-
nector’s design specification.

- Specification related with overall framework’s

A Design Technique of Component Framework Based on Framework Reference Model 759

architecture; framework’s name, framework’s
architecture type and style, and framework’s
dependency relationships.

- Specification related with variation points;
how many variation attributes, behaviors, and
workflows are provided.

- Specification related with framework’s hot
spots. Hot spots are replaced by component’s
specification defined by framework developer.

5. ASSESSMENT

We proposed a component reference model in
section 3. In Table 5, we compare the proposed
framework with several other framework models
introduced in section 2.1. Comparison criteria check
if each framework supports elements with precise
definition. SEI PLF means the SEI's Product Line
Framework. In this table, criteria are elements re-
lated with component framework model.

As shown in Table 5, most of the frameworks
do not consider detailed types of component inter—
face, connector, variability and some frameworks
do not support connector mechanism.(among ex-—

Table 5. Framework model comparison table

isting frameworks, none support detailed types for
interface, connector, and variability and only SEI

PLF supports connector mechanism)

5.1 Comparing Processes to Develop Frame-
works

In section 5.1, we defined the desirable properties
of framework development process with justifica-
tion in the proposed criteria. In Table 6, we com~
pare our approach with representative framework
engineering processes. Note that * means good and
=% means superior. In Table 6, design criteria are
elements related with component framework de-
velopment process. In Table 7, design criteria
means guidelines to design component framework
reference model during development process.

As shown in the Table 6, all methodologies sup~
port the traceability among artifacts. Instructions
for each activity are concretely suggested. For ex-
ample, how to design component framework archi-
tecture, how to fill gaps between components, and
how to describe variation points, and so on are pre—
sented specifically in the proposed process.
Furthermore, because our process provides con-—

Reference Model

Detailed Variability Type -

.. PuLSE SEI PLF UML-F Proposed Model

Criteria
Skeleton Architecture v v v v
Component Interface v v v v
Components v v v v
Connector - v - v
Variability Concept 4 v
Detailed Interface Type - - - v
Detailed Connector Type - - - v

- - v

Table 6. Coverage of compared methodologies for component frameworks

Methodology

Formal instructions or concepts -
Metric-based process -

. L SEI FSPLP PulLSE RSEB Proposed Process
Design Criteria
Traceability of Artifacts *% %% ®k s
Fine-grained Instructions - Hok * ok
Stepwise activity or instructions * *ok sk ek

- - *

* - —

760 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 6, JUNE 2006

Table 7. Coverage of compared methodologies for component framework reference model

. . Methodology SEI FSPLP PuLSE RSEB Proposed Process
Design Criteria
Skeleton Architecture *k *ok * ¥
Member Components * *k * *k
Three Types of Component Interfaces - - - *%
Macro Workflow Model *® * - *
Connectors * - - %

cepts and symbols clearly, proposed instructions
and concepts can be adapted to formal specification
and automatic transformation.

Also, we defined component framework refer-
ence model and its elements in Section 3.

In Table 7, we compare our approach with other
approaches based on the degree of supporting these
elements. As shown in Table 7, all existing proc-
esses do not consider three types of component in-
terfaces, RSEB does not support macro workflow
model, and PulLSE and RSEB do not support
connectors. However, these elements are essential
to build component framework. Qur approach con-
siders these elements as well as skeleton archi-

tecture and member components.

6. CONCLUDING REMARKS

We have presented a comprehensive reference
model and design technique for component frame-
work. The proposed reference model provides ele-
ments necessary to framework development.
Especially, skeleton architecture, three types of
components interface, and macro workflow model
are proposed newly in our reference model. Because
existing researches don't provide these elements,
reusability or adaptability of component framework
or component is very poor. However, developers
can develop component framework easily and ef-
fectively by using proposed elements of component
framework. Existing methodologies don’t suggest
concrete instructions or guidelines for component
framework develop as well as component frame-

work architecture. In this paper, we suggest a new

design technique for component framework based
on concepts of the proposed reference model. We
believe that the proposed reference model and de-
sign technique make not only components reused

effectively, but also applications built easily.

7. REFERENCES

[1] P. Clements, F. Bachmann, L. Bass, D. Garlan,
J. Ivers, R. Little, R. Nord, and]J. Stafford,
Documenting Software Architecture, Addison
Wesley, 2002.

[2] ME. Fayad, and D.C. Schmidt, “Object-
Oriented Application Frameworks,” Commu-
nications of the ACM, Vol. 40, No. 10, pp.
32-42, Oct. 1997.

3] L. Geyer, and M. Becker, “On the Influence
of Variabilities on the Application Engineering
Process of a Product Family,” LNCS 2379, pp.
1-14, SPLC2 2002, San Diego, CA, USA, Aug
19-22, 2002.

[4] G.T. Heineman, and W.T. Council, Component-
based Software Engineering, Addison Wesley,
2001.

[5]1 K. Whitehead, Component-based Development:
Principles and Planning for Business Systems,
Addison-Wesley, 2002.

[6] P. Clements, L. Northrop, et.al., “A Framework
for Software Product Line Practice-Version
4.1,” SEI, Sep. 2003, (http://www.sel.cmu.e~
du/plp/framework.html).

[7]1 B. Joachim, et.al, “PuLSE: A Methodology to
Develop Software Product Lines,” The Sym-
posium on Software Reusability’99, Los

[8]

(9]

[10]

[11]

A Design Technique of Component Framework Based on Framework Reference Model

Angeles, May 1999.

1. Jacobson, M. Griss, and P. Jonsson,
Software Reuse: Architecture, Process, and
Organization for Business Success, ACM
Press, New York, June 1997.

MF. Fontoura, W. Pree, and B. Rumpe,
“UML-F: A Modeling Language for Object-
Oriented Frameworks,” 14th European Con-
ference on Object Oriented Programming
(ECOOP 2000), Lecture Notes in Computer
Science 1850, Springer, pp. 63-82, Cannes,
France, 2000.

M. Hven-Gi, and K. Soo-Dong, “Practical
Connector Patterns for Designing Component
Frameworks,” Accepted in Journal of Korea
Information Science Society (KISS): Software
and Applications, pp. 43-53, Feb., 2004.

S. Dong-Syeop, S. Sook-Kyeung, and K.
Soo-Dong, “A Formal Model of Component
Variability Types and Scope,” Journal of
Korea Information Science Society(KISS):
Software and Applications, Vol. 30, No. 5, pp.
414~429, June 2003.

761

Eun-Sook Cho

received her BE. degree in
Computer Science from the
Dongeui University at Busan of
Korea in 1993. She received
both M.S. degree and Ph.D.
degree in Computer Science
from the Soongsil University at
Seoul of Korea in 1996 and 2000, respectively. She
worked as a invited researcher in ETRI(Electronics
Telecommunication Research Institute) at Daejon of
Korea from 2002 to 2003. She worked as a fuli-time
instructor in the department of Computer Science at
Dongduk Women's University. Dr. Cho is a full-time
instructor in the department of Software at Seoil
College. Dr. Cho’s research focus is software
engineering, object-oriented modeling technique,
software architecture, CBSE, MDA, software reuse,
and web-service computing.

