DOI QR코드

DOI QR Code

Experiment of Distributed Optical Fiber Sensor Using Spatially-Selective Brillouin Scattering

공간 선택적 브릴루앙 산란을 이용한 분포형 광섬유 센서의 실험

  • Published : 2006.03.01

Abstract

We demonstrate a distributed fiber sensor system based on spatially-selective Brillouin scattering, using a single laser diode as a light source whose optical frequency is directly modulated by the injection current. The pump and the counter-propagating probe lights, which are sinusoidally frequency-modulated, are superposed in the fiber so that stimulated Brillouin scattering takes places only at a specific location along the fiber. Brillouin gain peak position is controlled by varying the modulation frequency. Distributions of Brillouin shift frequency are measured for the case of concatenated optical fibers of two different kinds and also for the case of temperature distribution. The temperature coefficient of the Brillouin shift frequency is measured to be $1.33MHz/^{\circ}C$.

직접 광주파수 변조된 레이저 다이오드를 광원으로 이용하여 공간 선택적 브릴루앙 산란 방식으로 분포형 광섬유 센서를 구성하여 실험하였다. 광주파수가 정현파로 변조된 펌프와 프로브 빛이 광섬유 내로 서로 반대 방향으로 진행하며 중첩되도록 함으로써 광섬유 내 특정 지점에서만 유도 브릴루앙 산란이 발생하도록 하였으며, 변조 주파수를 변화시켜 브릴루앙 이득 피크의 위치를 조절할 수 있었다. 브릴루앙 천이 주파수가 서로 다른 광섬유를 접속한 경우와 광섬유 길이를 따라 온도 분포가 존재하는 경우에 대해 각각 브릴루앙 천이 주파수의 분포를 측정하였다. 브릴루앙 천이 주파수의 온도 변화율은 $1.33MHz/^{\circ}C$로 측정되었다.

Keywords

References

  1. K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology, (Chapman & Hall, UK, 1995), pp. 350-363
  2. J. Dakin and B. Culshaw, Optical Fiber Sensors Volume IV - Applications, Analysis, and Future Trends, (Artech House, USA, 1997), pp. 313-319
  3. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, USA, 1995), pp. 370-384
  4. D. Curverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, 'Potential of stimulated Brillouin scattering as a sensing mechanism for distributed temperature sensors,' Electron. Lett., vol. 25, no. 14, pp. 913-915, 1989 https://doi.org/10.1049/el:19890612
  5. T. Horiguchi, T. Kurashima, and M. Tateda, 'Tensile strain dependence of Brillouin frequency shift in silica optical fibers,' IEEE Photon. Technol. Lett., vol. 1, no. 5, pp. 107-108, 1989 https://doi.org/10.1109/68.34756
  6. X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, 'Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,' J. Lightwave Technol., vol. 13, no. 7, pp. 1340-1348, 1995 https://doi.org/10.1109/50.400678
  7. T. Horiguchi, T. Kurashima, H. Izumita, S. Furukawa, and Y. Koyamada, 'Brillouin optical time-domain reflectometry,' IEICE Trans. Commun., vol. 76, no. 4, pp. 382-390, 1993
  8. T. Horiguchi and M. Tateda, 'BOTDA - Nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory,' J. Lightwave Technol., vol. 7, no. 8, pp. 1170-1176, 1989 https://doi.org/10.1109/50.32378
  9. S.-B. Cho, J.-J. Lee, and I.-B. Kwon, 'Pulse base effect on the strain measurement of a Brillouin-scattering-based distributed optical fiber sensor,' Smart Mater. Struct., vol. 15, no. 2, pp. 315-324, 2006 https://doi.org/10.1088/0964-1726/15/2/011
  10. K. Hotate and M. Tanaka, 'Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - Proposal, experiment and simulation,' IEICE Trans. Electron., vol. 83, no. 3, pp. 405-412, 2000
  11. K. Hotate and T. Hasegawa, 'A correlation-based continuous wave technique for measuring Brillouin gain spectrum distribution along an optical fiber with centimeterorder spatial resolution,' in 14th International Conference on Optical Fiber Sensors, A. G. Mignani and H. C. Laferve, Eds., Proc. SPIE, vol. 4185, pp. 651-661, 2000
  12. M. Tanaka and K. Hotate, 'Application of correlation-based continuous-wave technique for fiber Brillouin sensing to measurement of strain distribution on a small size material,' IEEE Photon. Technol. Lett., vol. 14, no. 5, pp. 675-677, 2002 https://doi.org/10.1109/68.998722
  13. K. Hotate and H. Arai, 'Enlargement of measurement range of simplified BOCDA fiber-optic distributed strain sensing system using a temporal gating scheme,' in 17th International Conference on Optical Fiber Sensors, M. Voet, R. Willsch, W. Ecke, J. Jones, and B. Culshaw, Eds., Proc. SPIE, vol. 5855, pp. 184-187, 2005
  14. K. Y. Song, Z. He, and K. Hotate, 'Optimization of Brillouin optical correlation domain analysis system based on intensity modulation scheme,' Opt. Express, vol. 14, no. 10, pp. 4256-4263, 2006 https://doi.org/10.1364/OE.14.004256
  15. X. Bao, D. J. Webb, and D. A. Jackson, '22-km distributed temperature sensor using Brillouin gain in an optical fiber,' Opt. Lett., vol. 18, no. 7, pp. 552-554, 1993 https://doi.org/10.1364/OL.18.000552
  16. H. Naruse and M. Tateda, 'Trade-off between the spatial and the frequency resolutions in measuring the power spectrum of the Brillouin backscattered light in an optical fiber,' Appl. Opt., vol. 38, no. 31, pp. 6516-6521, 1999 https://doi.org/10.1364/AO.38.006516
  17. 윤승철, 서민성, 박희갑, '공간 선택적 브릴루앙 산란을 이용한 분포형 광섬유 센서의 시뮬레이션,' 한국광학회지, 제 17권 2호, pp. 127-135, 2006 https://doi.org/10.3807/KJOP.2006.17.2.127

Cited by

  1. Extension of measurement range in Brillouin optical correlation domain analysis by pump-probe switching vol.116, pp.1, 2014, https://doi.org/10.1007/s00340-013-5653-5
  2. Measurement Range Enlargement in Brillouin Optical Correlation Domain Analysis Using Multiple Correlation Peaks vol.16, pp.3, 2012, https://doi.org/10.3807/JOSK.2012.16.3.210