DOI QR코드

DOI QR Code

Mode Selection and Amplification of an Optical Frequency Comb Using Femto-Second Laser Injection-locking Technique

펨토초 레이저 주입잠금법을 이용한 광주파수 빗의 모드 선택과 증폭

  • Moon, H.S. (Division of Physical Metrology, Korea Research Institute of Standards and Science) ;
  • Kim, E.B. (Division of Physical Metrology, Korea Research Institute of Standards and Science) ;
  • Park, S.E. (Division of Physical Metrology, Korea Research Institute of Standards and Science) ;
  • Park, C.Y. (Division of Physical Metrology, Korea Research Institute of Standards and Science)
  • 문한섭 (한국표준과학연구원 기반표준부) ;
  • 김억봉 (한국표준과학연구원 기반표준부) ;
  • 박상언 (한국표준과학연구원 기반표준부) ;
  • 박창용 (한국표준과학연구원 기반표준부)
  • Published : 2006.03.01

Abstract

We have demonstrated the selection and the amplification of the components of an optical frequency comb using femto-second laser injection-locking technique. We used a mode-locked Ti:sapphire laser as a master laser and a single-mode diode laser as a slave laser. After passing through the interference filter with the center wavelength 794.7 nm and the transmittance bandwidth 1.5 nm, the optical frequency comb by mode-locked femto-second laser was injected into the slave laser. The injection-locked slave laser had $3{\sim}4$ multi-mode with the mode spacing 100.5 MHz, whichcorrespond to the repetition rate of a mode-locked Ti:sapphire laser. The power of the modes selected by femto-second laser injection-locking technique was amplified to several thousands times

펨토초 레이저 주입잠금법을 이용하여 펨토초 광주파수 벗에서 특정한 주파수 모드를 선택하고 증폭시켰다. 실험에서는 모드 잠금된 Ti:sapphire레이저를 지배 레이저로 그리고 단일모드로 발진하는 반도체 레이저를 종속 레이저로 사용하였다. 모드 잠금된 Ti:sapphire레이저를 중심파장 794.7 nm, 밴드 폭 1.5 nm의 간섭필터를 통과한 후 반도체 레이저에 주입잠금시켰다. 주입잠금된 반도체 레이저가 모드 잠금된Ti:sapphire레이저의 펄스 반복율과 일치하는 100.5 MHz간격의 모드 $3{\sim}4$개가 동시에 발진되는 것 확인할 수 있었다. 펨토초 레이저 주입잠금법에 의해서 선택된 모드의 출력을 수천 배 증폭시킬 수 있었다.

Keywords

References

  1. Th. Udem, R. Holzwarth, and T. W. Hansch, 'Optical frequency metrology,' Nature, Vol. 416, pp. 233-237 (2002) https://doi.org/10.1038/416233a
  2. Masao Takamoto, Feng-Lei Hong, Ryoichi Higashi1 & Hidetoshi Katori, 'An optical lattice clock,' Nature, Vol. 435, pp. 321-324 (2005) https://doi.org/10.1038/nature03541
  3. Steven T. Cundiff and Jun Ye, 'Colloquium: Femtosecond optical frequency combs,' Rev. Mod. Phys., Vol. 75, pp. 325-342 (2003) https://doi.org/10.1103/RevModPhys.75.325
  4. 문한섭, 김중복, 이호성, 양성훈, 김점술, '고출력 다이오드 레이저의 주입-잠금 과정 연구,' 한국광학회지, Vol. 6, No. 3, pp. 222-227 (1995)
  5. Charles C. Harb, Timothy C. Ralph, Elanor H. Huntington, Ingo Freitag, David E. McClelland, and Hans-A. Bachor, 'Intensity-noise properties of injectionlocked lasers,' Phys. Rev. A, Vol. 54, No. 5, pp. 4370-4382 (1996) https://doi.org/10.1103/PhysRevA.54.4370
  6. H. S. Moon, J. B. Kim, S. D. Park, B. K. Kwon, H. Choe, and H. S. Lee, 'Magneto-optic trap of Rb atoms with an injection-seeded laser that operates at two frequencies,' Appl. Opt., Vol. 35, No. 27, pp. 5402-5405 (1996) https://doi.org/10.1364/AO.35.005402
  7. Sang Eon Park, Taeg Yong Kwon, and Ho Seong Lee, 'Production of Raman Laser Beams Using Injection-Locking Technique,' IEEE Trans. Instrum. Meas., Vol. 52, No. 2, pp. 277-279 (2003) https://doi.org/10.1109/TIM.2003.809911
  8. Xiaohui Fang, D.N. Wang, W. Jin, H. L. Ho and F. W. Tong, 'Combined mutual pulse injection-seeding and active mode locking system for wavelength tunable optical short pulse generation,' Opt. Exp. Vol. 13, No. 3, pp. 681-688 (2005) https://doi.org/10.1364/OPEX.13.000681
  9. O. P. Gough, C.F.C. Silva, S. Bennett, and A.J. Seeds, 'Zero frequency error DWDM channel synthesis using optical injection-locked comb line selection,' Elect. Lett., Vol. 35, No. 23, pp. 2050-2052 (1999) https://doi.org/10.1049/el:19991314
  10. S. Fukushima, C. F. C. Silva, Y. Muramoto, and Alwyn J. Seeds, 'Optoelectronic Millimeter-Wave Synthesis Using an Optical Frequency Comb Generator, Optically Injection Locked Lasers, and a Unitraveling-Carrier Photodiode,' J. Lightwave Technol., Vol. 21, No. 12, pp. 3043-3051 (2003) https://doi.org/10.1109/JLT.2003.822250