Elevated Temperature Deformation Behavior in an AZ31 Magnesium Alloy

  • Yang Kyoung-Tak (Department of Automotive Engineering, Graduate School, Seoul National University of Technology) ;
  • Kim Ho-Kyung (Department of Automotive Engineering, Seoul National University of Technology)
  • 발행 : 2006.08.01

초록

An AZ31 magnesium alloy was tested at constant temperatures ranging from 423 to 473 K (0.46 to 0.51 Tm) under constant stresses. All of the creep curves exhibited two types depending on stress levels. At low stress (${\sigma}/ G < 4 {\times}10^{-3}$), the creep curve was typical of class A (Alloy type) behavior. However, at high stresses (${\sigma}/ G > 4 {\times}10^{-3}$), the creep curve was typical of class M (Metal type) behavior. At low stress level, the stress exponent for the steady-state creep rate was of 3.5 and the true activation energy for creep was 101 kJ/mole which is close to that for solute diffusion. It indicates that the dominant deformation mechanism was glide-controlled dislocation creep. At low stress level where n=3.5, the present results are in good agreement with the prediction of Fridel model.

키워드

참고문헌

  1. Cannon W. R. and Sherby O. D., 1970, 'High Temperature Creep Behavior of Class I and Class II Solid-Solution Alloys,' Metall. Trans., Vol. 1, pp. 1030-1032
  2. Endo, T., Shimada T. and Langdon T. G., 1984, 'The Deviation from Creep by Viscous Glide in Solid Solution Alloys at High Stress-I. Characteristics of the Dragging Stress,' Acta Metall., Vol. 32, pp. 1991-1999 https://doi.org/10.1016/0001-6160(84)90179-2
  3. Evangerlista, E. et al., 2005, 'Analysis of the Effect of Si Content on the Creep Response of an Mg-SAI-Mn Alloy,' Mat. Sci. Eng. A, Vol. 410-411, pp. 62-66 https://doi.org/10.1016/j.msea.2005.08.150
  4. Friedel, J., 1964, Dislocations, Pergamon Press, Oxford
  5. Friedrich, H. and Schumann, S., 2001, 'Research for a New Age of Magnesium in the Automotive Industry,' J. Mat. Processing Tech., Vol. 117, pp. 276-281 https://doi.org/10.1016/S0924-0136(01)00780-4
  6. Frost, H. J. and Ashby, M. F., 1982, Deformation- Mechanisms Maps, Pergamon Press, Oxford
  7. Isshiki, K. et al., 1997, 'A New Miniature Mechanical Testing Procedure: Application to Intermetallics,' Metal. & Mater. Trans. A, Vol. 28A, pp.2577-2582 https://doi.org/10.1007/s11661-997-0015-8
  8. Kim, H. K., Chung, K. and Chung, C. S., 1998, 'High Temperature Rupture Lifetime of 304 Stainless Steel Under Multiaxial Stress States,' KSME Journal A, Vol. 22. No.3, pp.595-602
  9. King, H. W., 1966, J. Mater. Sci., Vol. 1, pp. 79 https://doi.org/10.1007/BF00549722
  10. Kucharova, K., Saxl, I. and Cadek, J., 1974, Acta Metall., Vol. 22, pp.465 https://doi.org/10.1016/0001-6160(74)90099-6
  11. Luo, A. A., 2004, 'Recent Magnesium Alloy Development for Elevated Temperature Applications,' Int. Mat. Rev., Vol. 49, No.1, pp. 13-30 https://doi.org/10.1179/095066004225010497
  12. Murty, K. L. 1973, Scripta Metall., Vol. 7, pp. 899 https://doi.org/10.1016/0036-9748(73)90138-5
  13. Robinson, S. L. and Sherby, O. D., 1969, 'Mechanical Behavior of Polycrystalline Tungsten at Elevated Temperature,' Acta Metall., Vol. 17, pp. 109-125 https://doi.org/10.1016/0001-6160(69)90132-1
  14. Shewmon, P. G. and Rhines, F. N., 1954, Trans. Am. Inst. Min. Engrs, Vol. 200, pp. 1021
  15. Shi, L. and Northwood, D.O., 1994, 'StrainHardening and Recovery During the Creep of Pure Polycrystalline Magnesium,' Acta Metall., Vol. 42, pp. 871-877 https://doi.org/10.1016/0956-7151(94)90282-8
  16. Somekawa, H. et al., 2005, 'Dislocation Creep Behavior in Mg-AI-Zn Alloys,' Mat. Sci. Eng. A, Vol. 407, pp.53-61 https://doi.org/10.1016/j.msea.2005.06.059
  17. Spigarelli, S. et al., 2000, 'Analysis of the Creep Behavior of a Thixoformed AZ91 Magnesium Alloy,' Mat. Sci. Eng. A, Vol. 289, pp. 172-181 https://doi.org/10.1016/S0921-5093(00)00911-4
  18. Suzuki, M. et al., 1998, 'Creep Behavior and Deformation' Microstructures of Mg- Y Alloys,' Mat. Sci. Eng. A, Vol. 252, pp.248-255 https://doi.org/10.1016/S0921-5093(98)00662-5
  19. Takeuchi, S. and Argon, A. S., 1976, 'SteadyState Creep of Alloys Due to Viscous Motion of Dislocations,' Acta Metall., Vol. 24, pp.883-889 https://doi.org/10.1016/0001-6160(76)90036-5
  20. Vagarali, S. S. and Langdon, T. G., 1981, 'Deformation Mechanisms in H. C. P. Metals at Elevated Temperatures-I. Creep Behavior of Magnesium,' Acta Metall., Vol. 30, pp. 1969-1982 https://doi.org/10.1016/0001-6160(81)90034-1
  21. Vagarali, S. S. and Langdon, T. G., 1982, 'Deformation Mechanisms in H. C. P. Metals at Elevated Temperatures - II. Creep Behavior of a Mg-8% Al Solid Solution Alloy,' Acta Metall., Vol. 30, pp. 1157-1170 https://doi.org/10.1016/0001-6160(82)90009-8
  22. Watanabe, et al., 2001, 'Deformation Mechanism in a Coarse-Grained Mg-AI-Zn Alloy at Elevated Temperatures,' Int. J. Plasticity, Vol. 17, pp. 387-397 https://doi.org/10.1016/S0749-6419(00)00042-5
  23. Weertman, J., 1957, 'Steady-State Creep of Crystals, J. Appl. Phys., Vol. 28, pp. 1185-1189 https://doi.org/10.1063/1.1722604
  24. Yavari, P. and Langdon, T. G., 1982, Acta Metall., Vol. 30, pp.2196 https://doi.org/10.1016/0001-6160(82)90139-0