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MHD Hartmann flow of a Dusty Fluid
with. Exponential Decaying Pressure Gradient
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In the present study, the unsteady Hartmann flow with heat transfer of a viscous incom-

pressible electrically conducting fluid under the influence of an exponentially decreasing pres-
sure gradient is studied. The parallel plates are assumed to be porous and subjected to a uniform
suction from above and injection from below while the fluid is acted upon by an external

uniform magnetic field applied perpendicular to the plates. The equations of motion are solved
analytically to yield the velocity distributions for both the fluid and dust particles. The energy
equations for both the fluid and dust particles including the viscous and Joule dissipation terms,

are solved numerically using finite differences to get the temperature distributions.

1. Introduction

The importance and application of solid/fluid
flows and heat transfer in petroleum transport,
wastewater treatment, combustion, power plant
piping, corrosive particles in engine oil flow, and
many others are well known in the literature
(Lohrabi, 1980 ; Chamkha, 2000 ; Saffman, 1962 ;
Gupta and Gupta, 1976 ; Prasad and Ramacharyulu,
1979 ; Dixit 1980 ; Ghosh and Mitra, 1984). Par-
ticularly, the flow and heat transfer of electrically
conducting fluids in channels and circular pipes
under the effect of a transverse magnetic field
occurs in magnetohydrodynamic (MHD) genera-
tors, pumps, accelerators, and flow meters and has
possible applications in nuclear reactors, filtra-
tion, geothermal systems, and others. The possible
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presence of solid particles such as ash or soot in
combustion MHD generators and plasma MHD
accelerators and their effect on the performance
of such devices led to studies of particulate sus-
pensions in conducting fluids in the presence of
magnetic fields. For example, in an MHD gener-
ator, coal mixed with seed is fed into a combustor.
The coal and seed mixture is burned in oxygen
and the combustion gas expands through a nozzle
before it enters the generator section. The gas mix-
ture flowing through the MHD channel consists
of a condensable vapor (slag) and a non-con-
densable gas mixed with seeded coal combustion
products. Both the slag and the non-condensable
gas are electrically conducting (Lohrabi, 1980 ;
Chamkha, 2000). The presence of the slag and
the seeded particles significantly influences the
flow and heat transfer characteristics in the MHD
channel. Ignoring the effect of the slag, and con-
sidering the MHD generator start-up condition,
the problem reduces to unsteady two-phase flow
in an MHD channel (Singh, 1976 ; Mitra and
Bhattacharyya, 1981 ; Borkakotia and Bharali, 1983 ;
Megahed et al., 1988 ; Aboul-Hassan et al., 1991).

In the present work, the transient Hartmann
flow with heat transfer of an electrically conduct-
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ing, viscous, incompressible, dusty fluid is stu-
died. The fluid is acted upon by an exponentially
decaying with time pressure gradient. The fluid is
assumed to be incompressible and electrically
conducting and the particle phase is assumed to
incompressible, electrically non-conducting dusty
and pressureless. The fluid is flowing between
two infinite electrically insulating porous plates
maintained at two constant but different tem-
peratures while the particle phase is assumed to
be electrically non-conducting. The fluid is sub-
jected to a uniform suction from above and a
uniform injection from below and mass conser-
vation is assumed. An external uniform magnetic
field is applied perpendicular to the plates while
no electric field is applied and the induced mag-
netic field is neglected by assuming a very small
magnetic Reynolds number. This configuration is
a good approximation of some practical situa-
tions such as heat exchangers, flow meters, and
pipes that connect system components. The equa-
tions of motion are solved analytically using the
method of Laplace Transform to obtain the ve-
locity distributions for both the fluid and dust
particles as functions of space and time. The
energy equations including the viscous and Joule
dissipation terms are solved numerically using the
finite difference approximations to obtain the
temperature distributions for both the fluid and
dust particles. The effect of the magnetic field, the
Hall current, the ion slip, and the suction velocity
on both the velocity and temperature fields are
reported.

2. Description of the Problem

The dusty fluid is assumed to be flowing be-
tween two infinite horizontal porous plates locat-
ed at the y==} planes. A uniform pressure gra-
dient, which is taken to be exponentially decaying
with time, is applied in the x-direction. The
plates are subjected to a uniform suction from
above and a uniform injection from below. Thus
the y-component of the velocity of the fluid is
constant and denoted by v,. The dust particles are
assumed to be electrically non-conducting sphe-
rical in shape and uniformly distributed through-

out the fluid and to be big enough, so that they
are not pumped out through the porous plates
and have no y-component of velocity. The two
plates are assumed to be electrically non-con-
ducting and kept at two constant temperatures 7;
for the lower plate and 73 for the upper plate with
T>> Th. A uniform magnetic field B, is applied
in the positive y-direction. This is the only mag-
netic field in the problem as the induced magnetic
field is neglected by assuming a very small mag-
netic Reynolds number (Megahed et al., 1988).
The fluid motion starts from rest at £=0, and the
no-slip condition at the plates implies that the
fluid and dust particles velocities have neither a z
nor an x-component at y==/. The initial tem-
peratures of the fluid and dust particles are as-
sumed to be equal to 73. It is required to obtain
the time varying velocity and temperature distri-
butions for both fluid and dust particles. Due to
the inclusion of the Hall current term, a z-com-
ponent of the velocities of the fluid and of dust
particles is expected to arise. Since the plates are
infinite in the x and z-directions, the physical
quantities do not change in these directions that
is d/0dx=0/02=0 and the problem is essentially
one-dimensional. The governing equations for
this study are based on the conservation laws of
mass, linear momentum and energy of both phases.
In this work, it is assumed that both phases are
treated as two interacting continua. The interac-
tion between the phases is restricted to the inter-
phase drag force which is modeled by Stokes
linear drag theory and the interphase heat transfer
(Lohrabi, 1980 ; Chamkha, 2000) .

3. The Velocity Distribution

The flow of fluid is governed by the momentum

equation
Dv _ 2

CDr= —VP+uN* v+ ]JxB,—Kn(v—vp) (1)
where p is the density of clean fluid, u is the
viscosity of clean fluid, v is the velocity of the
fluid, v=1u(y, )1+ voj, v» is the velocity of dust
particles, vp=1up (v, )i, J is the current density,
N is the number of dust particles per unit volume,
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K is the Stokes constant =67ua, and “q” is the
average radius of dust particles.

The first three terms in the right-hand side of
Eq. (1) are, respectively, the pressure gradient,
viscosity, and Lorentz force terms. The last term
represents the force due to the relative motion
between fluid and dust particles. It is assumed
that the Reynolds number of relative velocity is
small. In such a case the force between dust and
fluid is proportional to the relative velocity
(Saffman, 1962). The current density J from the
generalized Ohm’s law is given by (Crammer and
Pai, 1973 ; Sutton and Sherman, 1965)

J=0lE+vxB,] (2)

where ¢ is the electric conductivity of the fluid
(Crammer and Pai, 1973 ; Sutton and Sherman,
1965). Solving Eq. (2) for J and substituting the
result in Eq. (1), the two components of Eq. (1)
read

ou du
p—a—t—“*' pvow

dP Fu

T Td My

The motion of the dust particles is governed by
Newton’s second law applied in the x and z-

(4)
oB2u— KN (u—up)

directions

my 22— KN (= uy) (5)

where mip is the average mass of dust particles.
It is assumed that the pressure gradient is applied
at =0 and the fluid starts its motion from rest.
Thus,
<0 u=up=0

For >0, the no-slip condition at the plates

implies that
1>0, y=th @ u=up=0
The problem is simplified by writing the equa-
tions in the non-dimensional form. The charac-
teristic length is taken to be %, and the charac-
teristic time is pk%/p while the characteristic
velocity is u/ho. We define the following non-
dimensional quantities
(%, 9,2)=(x, 3, 2) /b, f=tp/ oW,
P=Pol?/if, 4= poh/ 1, to=usoh/
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S=phv,/p is the suction parameter,
G=mpp/ pk*K is the particle mass parameter,
H2=¢B%}?/ it is the Hartmann number squared,
R=KNh/u is the particle concentration para-
meter.

In terms of the above non-dimensional quanti-
ties the velocity equations read

ou du
W—FS—@ (6)
P
=—Z,1—x+ gzyzg —H:u—R(u—up)
Géguf—=u—up (7

with the initial and boundary conditions,
1<0: u=up=0, t>0. y==x1, u=up=0 (8)

Equations (6)-(8) may be solved using the method
of Laplace Transform (LT)[19] to obtain ¥V and
V» as functions of y and ¢. The real part of Vor
V» represents the x-component of the velocity
while the imaginary part represents the z-com-
ponent. Taking LT with respect to the time of
Egs. (12) and (13) we have

du
dy?

SZ—Z—Aa—sa—R(a—zm:—F(s) 9)

Gsitp=u—Usp (10)

where #=34(y, s) and #,=1#,(y, s) are respec-
tively, the LT of %(y, ¢) and us(y, t), A=HZ,
and —F (s) is the LT of the pressure gradient. &
and #p must satisfy the boundary conditions, # =
#ip=0at y==11. All the bars will be dropped for
convenience. Eliminating up gives

d*u
dy*

=sj—;‘—1ﬁu=—F<s> (11)

where Ki=Ki(s) =A=s+R(1—1/{1+Gs)).

The solution of the above equation gives

(3, ) =EL (L exp(5y/2) [ SIS/ ii;;h(qy)
cosh(S/2) cosh{gy) D
cosh(q)
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and from Eq. (10) we obtain

up(y, s) =EI({%)< 1+exp(Sy/2) [sinh(gi/j})l?;r)lh(qw
cosh(S/2) cosh(gy) ])
cosh(g)

where g*=(S+4K;) /4 and K.=K,(1+Gs).

Using the complex inversion formula and the
residue and convolution theorems (Spiegel, 1986),
the inverse transforms of # (v, s) and up(y, §)
are given as

uly, t) =Cg (P—]{Z%exp(PMxt) —exp(—at))

PL
+ PN;+a

+-p—(exp( PNoxt) —exp(—at))

P,
T PNi+a

up(y, 1) ZC;%( P]Ii{ﬁa exp

PIP,
PN, +a

PIP,
PNy+a
PIP,
PN, +a

(exp (PNoxt) —exp(—at))
(12)

{exp (PNuxt) —exp(—at) ))

(PNixt) —exp(—at))

+

(exp (PNext) —exp(—at))
(13)
(exp (PNsxt) —exp(—at))

+

+

(exp (PNext) —exp(—aﬁf)))

where

—%= Cexp(—at)

_ NNixG—B+V(NNxG—B)*—4xGx (A—NNy)
- 2G

_ NNuxG—B—V(NNixG—B)?—4xGx (A—NNy)
2G

_ NNoxG—B+/(NNuxG—B)*—4xGx (A— NNo)
- 2G

_ NNoxG— B~/ (NNyx G~ B)*—4xGx (A—NN))
= 2G

PN

PN

PN,

PN,
____NM
KPN1xDPN1

_ NN
KPN;xDPN,

____NN,
KPNsxDPN,

___ NN
KPNxDPN,

FPhL

FI,

Pl

Pl

PIH:(H——CI;;I;P—]\U
PIP=rEiamy
PIP= (- Emmy
PIP=rr e
B=1+G(A+R)

NNi=—r*(n—1)*—S%/4
NN;=—7%(n—0.5)—S5%/4
NN;=2x(=1)"(n~1)exp(Sy/2)sinh(S/2)sin(z(n-1) )
NNi=2x(=1)"(n—1exp(Sy/2)sinh(S/2)sin(x(n—1) y)

NN=2r(—1)"(n—0.5) exp(Sy/2) cosh{S/2) cos (m{n—0.5) y)

_ GxPNi+BxPNi+A
KPM="""0C 3PN,
_ GxPN}+BxPN,+A
KPN:= 14+ Gx PN,
__ GxPNi+BxPN:+ A
KPNe="""1T PN,
_ GxPNi+BxPN;+A
KPNe=—""TCxFN,
ppy =\ F GePN) QGrPN:i+ B) ~ G (GxPNi+ BxPNi+A)
! (14 GxPN)*
DPN= (1+GxPNy) (2GxPNo+ B) — G(GxPN; + BxPN, + A)
: (14 GxPNy)?
DPNi= (14 GxPNs) (2GxPNs+ B) ~ G(Gx PN+ Bz PNs + A)
3 {1+ GxPNy)?
DPNi= (14 GxPNy) (2GxPNy+ B) — G(GxPN#+ BxPN,+ A)
! (14 GxPN,)*

The summation parameter # and the coordinate
y are included in the above quantities.

4. The Temperature Distribution
Heat transfer takes place from the upper hot

plate to the lower cold plate by conduction through
the fluid. Since the hot plate is above, there is
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no natural convection, however, there is a forced
convection due to the suction and injection. In
addition to the heat transfer, there is a heat gen-
eration due to both the Joule and viscous dis-
sipations. The dust particles gain heat from the
fluid by conduction through their spherical sur-
face. Since, the problem deals with a two-phase
flow, two energy equations are required (Crammer
and Pai, 1973 ; Schlichting, 1968). The energy
equations describing the temperature distribu-
tions for both the fluid and dust particles read

pca_T+pconL
ot oy (14)
_ 32T ou \* 2. 2, PpCs _
=% +/1<—ay> +oBbut+ 2 (T, T)
T _ 1 p_
=5 (L= T) (15)

where T is the temperature of the fluid, 7 is the
temperature of the particles, ¢ is the specific heat
capacity of the fluid at constant volume, £ is the
thermal conductivity of the fluid, o, is the mass
of dust particles per unit volume of the fluid, yr
is the temperature relaxation time, and ¢s is the
specific heat capacity of the particles.

The last three terms on the right-hand side of
Eq. (14) represent the viscous dissipation, the
Joule dissipation (7%/¢), and the heat conduction
between the fluid and dust particles respectively.
The temperature relaxation time depends, in gen-
eral, on the geometry, and since the dust particles
are assumed to be spherical in shape, the last term
in Eq. (14) is equal to 47aNk(T,— T). Hence

3 Pr yscs
e

where 7, is the velocity relaxation time =2p0s4?%/
94, Pr is the Prandtl number =pc/k, and oss is
the material density of dust particles =3pp/47a°
N.

T and Tp must satisfy the initial and boundary
conditions

t<0: T=T,=0
>0, y=—h . T=T=T
t>0, yv=h . T=T,=T:
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To put these equations in the non-dimensional
form, we use the same non-dimensional quanti-
ties defined in the velocity distribution section in
addition to the following non-dimensional quan-
tities

E.=12/htco®*(T— Ty) is the Eckert number,
Lo=ph*/uyr is the temperature relaxation time
parameter.

In terms of the above non-dimensional vari-
ables and parameters, Eqs. (14) and (15) become

0T , 0T _ 1 &T du \?
Gt S = 5 tE(5y) »
2 2 2R _
+H;Ecu +——3 Pr (To—T)
L Lo(Ty-T) ()

T and Tp must satisfy the initial and boundary
conditions

t<0. T=T,=0 (18a)
>0, y=—1. T=T,=0 (18b)
t>0, v=1. T=Tp=1 (18¢)

If the values of the velocity components are sub-
stituted in the right-hand side of the energy Eq.
(16), the resulting energy equations are cum-
bersome and too difficult to solve analytically.
Therefore we resort to numerical techniques and
solve the equations using the finite difference ap-
proximation (Ames, 1977). We choose the Crank-
Nicolson implicit method. The finite difference
equations are written at the midpoints of the com-
putational cell and the different terms are replac-
ed with their second order central difference ap-
proximations in the y-direction. The diffusion
terms are replaced with the average of the central
differences at two successive time levels. The
Joule and the viscous dissipation terms are eva-
luated using the velocity components and their
derivatives in the y-direction, which are obtained
from the exact solution.
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5. Results and Discussion

Figure | presents, respectively, the profiles of
the velocity components and temperature of the
fluid « and T and particles #p and T} for various
values of time £. The figures are plotted for H,=
1 and S=1. As shown in Figs. 1(a) and 1(b) the
profiles of « and wup, are asymmetric about the
plane y=0 because of the suction. It is observed
that the velocity component and temperature of
the fluid phase reach the steady state faster than
that of the particle phase. This is because the fluid
velocity is the source for the dust particles’ veloc-
ity. It is shown that the velocity components and
temperatures of the fluid and dust particles do not
reach the steady state monotonically due to the
effect of the pressure gradient.

Figure 2 shows the time evolution of the veloc-
ity components and temperature at the centre of
the channel (y=0), respectively, for the fluid and
particle phases for various values of the
Hartmann number H, and S=0. Figures 2{a)
and 2(b) indicate that increasing H, decreases %
and wup for all £, as a result of increasing the

(a)

| ——1t=0.5 ~p—t=1 —p—1t=2

(c)
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damping force on % which decreases % and con-
sequently decreases up. Figures 2{c) and 2(d)
indicate that the variation of 7 and 7, with H,
depends on time. It is clear that for small f,
T and 7T, due to
increasing the Joule dissipation. But, for large £,

increasing H, increases

increasing H, decreases T as a result of de-
creasing the velocities % and up and consequently
decreases the viscous and Joule dissipations.
Figure 3 presents the time evolution of the
velocity components and temperature at the centre
of the channel (v=0), respectively, for the fluid
and particle phases for various values of the
suction parameter S and H,=0. It is clear from
Figs. 3(a) and 3(b) that increasing the suction
parameter decreases both # and %, due to the
convection of the fluid from regions in the lower
half to the centre which has higher fluid speed.
Figures 3(c} and 3(d) show that increasing S
decreases the temperature at the centre of the
channel. This is due to the influence of convection
in pumping the fluid from the cold lower half
towards the centre of the channel. It is observed
from Figs. 2 and 3 that the suction has a more
pronounced effect on the steady state time of the

(b)

[—e—1=0.5 —o—t=1 ——t=2]

(d)

Time variation of the profiles of: (a) #; (b) wup; (¢) T and (d) Tp.(Hs=1 and S=1)
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velocity and temperature of the particles than that  of the magnetic field.

F«-Ha=0 —0- Ha=1 -A-—Ha=31 E._._Ha=o_0 Ha=1 - Ha=3§

(c) (d)
Fig. 2 Effect of Ha on the time variation of: (a) u at y=0; (b) #, at y=0; (c) T at y=0 and
(d) Tp at y=0.(5=0)

2 : 3
1.5 4—= : . 2 M;
s 1- > %
0.5 4+ o L I I—— d— B
0 0 &
t t
s e 80 oo o2

(a)

0.8
0.6 B
MR o S SPADNPI
~ 0.4 el
0.2 -
0 ’ T
t
g__l - §=0 —g—S=1 —-A—-s=2] [.+-S=Q o— S=1 S=2
© @

Fig. 3 Effect of S on the time variation of: (a) u at y=0; (b) up at y=0; (¢c) T at y=0 and
(d) Tp at y=0.(H,=0)
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6. Conclusions

The unsteady flow with heat transfer of a dusty
conducting fluid under the influence of an appli-
ed uniform magnetic field has been studied in
the presence of uniform suction and injection and
an exponential decaying pressure gradient. An
analytical solution for the equations of motion
has been obtained while the energy equation has
been solved numerically using finite differences.
The effect of the magnetic field, and the suction
and injection velocity on the velocity and tem-
perature distributions for both the fluid and par-
ticle phases has been investigated. It is of interest
to see that the effect of the magnetic field on the
temperatures of the fluid and particles depends on
time. Also, it is observed that the suction velocity
has a more apparent effect than the magnetic field
on the steady state time of the velocity and tem-
perature of the dust particles.
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