Application of Subgrid Turbulence Model to the Finite Difference Lattice Boltzmann Method

차분 래티스볼츠만법에 Subgrid 난류모델의 적용

  • 강호근 (경상대학교 해양산업연구소) ;
  • 안수환 (경상대학교 기계항공공학부.농생명과학연구원) ;
  • 김정환 (한국조선기자재연구원)
  • Published : 2006.07.01

Abstract

Two-dimensional turbulent flows past a square cylinder and cavity noise are simulated by the finite difference lattice Boltzmann method with subgrid turbulence model. The method, based on the standard Smagorinsky subgrid model and a single-time relaxation lattice Boltzmann method, incorporates the advantages of FDLBM for handling arbitrary boundaries. The results are compared with those by the experiments carried out by Noda & Nakayama and Lyn et al. Numerical results agree with the experimental ones. Besides, 2D computation of the cavity noise generated by flow over a cavity at a Mach number of 0.1 and a Reynolds number based on cavity depth of 5000 is calculated. The computation result is well presented a understanding of the physical phenomenon of tonal noise occurred primarily by well-jet shear layer and vortex shedding and an aeroacoustic feedback loop.

Keywords

References

  1. S. Chen and D. Doolen, 'Lattice Boltzmann Method for Fluid Flows,' Annual Review of Fluid Mechanics, Vol.30, pp. 329-364, 1998 https://doi.org/10.1146/annurev.fluid.30.1.329
  2. C.H. Sun and A. Hsu, 'Multi-level Boltzmann Model on Square Lattice for Compressible Flows,' Computers & Fluids, Vol.33, pp. 1363-1385, 2004 https://doi.org/10.1016/j.compfluid.2003.12.001
  3. A.M. Artoli, A.G. Hoekstra and P.M.A. Sloot, 'Optimizing Lattice Boltzmann Simulations for Unsteady Flows,' Computers & Fluids, Vol.35, pp. 227-240, 2006 https://doi.org/10.1016/j.compfluid.2004.12.002
  4. H.K. Kang, K.D. Ro, M. Tsutahara and Y.H. Lee, 'Numerical Prediction of Acoustic Sounds Occurring by the Flow Around a Circular Cylinder,' KSME International Journal, Vol.17, No.8, pp. 1219-1225, 2003
  5. H.K. Kang and E.R. Kim, 'On Implementation of the Finite Difference Lattice Boltzmann Method with Internal Degree of Freedom to Edgetone,' Journal of Mechanical Science and Technology, Vol.19, No.11, pp. 2032-2039, 2005 https://doi.org/10.1007/BF02916496
  6. S. Hou, J. Sterling, S. Chen and G.D. Doolen, 'A Lattice Subgrid Model for High Reynolds Number Flows,' Fields Institute Communications, Vol.6, pp. 151-166, 1996S
  7. H. Feiz, J.H. Soo and S. Menon, 'LES of Turbulent Jets using the Lattice Boltzmann Approach,' AIAA Paper No. 2003-0780, 2003
  8. J. Smagorinsky, General Circulation Experiments with the Primitive Equations: I. the Basic Equations, Monthly Weather Review, 91, pp.99-164, 1963 https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  9. S. Chapman and T.G. Cowling, Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge, 1952
  10. A. Favre, 'Turbulence: Space-Time Statistical Properties and Behavior in Supersonic Flows,' Physics of Fluids, Vol.26, No.10, pp. 2851-2863, 1983 https://doi.org/10.1063/1.864049
  11. 野田 博, 中山 昭彦, 'LESによゐ一樣亂流中 におけゐ2次元角柱周りの流れの再現性,' 日本建葉學會構造系論文集, No.538, pp.57-64, 2000
  12. 강호근,김은라, '차분격자볼츠만법에 의한 유동소음의 수치계산,' 한국해양공학회지, Vol.18, No.2, pp.10-17, 2004
  13. D.A. Lyn, S. Einav, W. Rodi and J.H. Park, 'A Laser-Doppler Velocimetry Study of Ensemble-Averaged Characteristics of the Turbulent near Wake of a Square Cylinder,' Journal of Fluid Mechanics, Vol.304, pp.258-319, 1995
  14. M. Germano, U. Piomelli, P. Moin and W.H. Cabot, 'A Dynamic Subgrid-Scale Eddy Viscosity Model,' Physics of Fluids A, Vol.3, No.7, pp. 1760-1765, 1991 https://doi.org/10.1063/1.857955
  15. X. Gloerfelt, C. Bailly and D. Juve, 'Direct Computation of the Noise Radiated by a Subsonic Cavity Flow and Application Integral Methods,' Journal of Sound and Vibration, Vol.266, pp. 119-146, 2003 https://doi.org/10.1016/S0022-460X(02)01531-6