STUDY ON THE TENSOR PRODUCT SPECTRUM

Dong Hark Lee

ABSTRACT. We will introduce tensor product spectrums on the tensor product spaces. And we will show that $\sigma[P(T_1, T_2, \dots, T_n)] = P[(\sigma(T_1), \sigma(T_2), \dots, \sigma(T_n)] = \sigma(T_1, T_2, \dots, T_n).$

1. Introduction

Let $X_1 \otimes X_2 \otimes \cdots \otimes X_n$ denote tensor product space of the complex Banach space $X_i, 1 \leq i \leq n$ and $X_1 \overline{\otimes} X_2 \overline{\otimes} \cdots \overline{\otimes} X_n$ the completion of $X_1 \otimes X_2 \otimes \cdots \otimes X_n$.

Let BL(X) denote the class of the bounded linear operators on the complex Banach space X and $T_1 \otimes T_2 \otimes \cdots \otimes T_n$ be a tensor product operator on $X = X_1 \overline{\otimes} X_2 \overline{\otimes} \cdots \overline{\otimes} X_n$. Gelfand's theorem means that if η is an abelian Banach algebra with unit containing the elements T_1, T_2, \ldots, T_n and $P(z_1, z_2, \ldots, z_n)$ is a polynomial in n variables, then $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n) \in \sigma(P) = \sigma[P(T_1, T_2, \ldots, T_n)]$ if and only if there exists a homomorphism $h: \eta \to \mathbb{C}$ such that $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n) = h[P(T_1, T_2, \ldots, T_n)]$, where $\sigma(P)$ is the spectrum of a polynomial P([8, 13]).

The spectral mapping theorem means that when $A: X \to X$ is a bounded linear operator acting on the complex Banach space X and $\mathfrak{F}(A)$ denote the family of all complex-valued functions f that are analytic on some open neighborhood of $\sigma(A)$ and when $f \in \mathfrak{F}(A)$, then $\sigma(f(A)) = \{f(\lambda) | \lambda \in \sigma(A)\} = f([\sigma(A)])$ ([8, 13-16]).

Received November 23, 2005.

2000 Mathematics Subject Classification: 47A53.

Key words and phrases: joint tensor spectrum.

2. Main result

Let $P(\lambda_1, \lambda_2, ..., \lambda_n)$ be a polynomial in n variables such that $P(\lambda_1, \lambda_2, ..., \lambda_n) = \lambda_1 \lambda_2 \cdots \lambda_n \in \mathbb{C}$ for $\lambda_i \in \mathbb{C}, 1 \leq i \leq n$. Then we obtain the following result.

THEOREM 2.1. Let X_i be a complex Banach space and $X_1 \overline{\otimes} X_2 \overline{\otimes} \cdots \overline{\otimes} X_n$ the completion of the tensor product space $X_1 \otimes X_2 \otimes \cdots \otimes X_n$ with respect to some cross norm.

Let $T_i \in BL(X_i)$ and if $P(\lambda_1, \lambda_2, ..., \lambda_n)$ is a polynomial in n variables such that $P(\lambda_1, \lambda_2, ..., \lambda_n) = \lambda_1 \lambda_2 \cdots \lambda_n \in \mathbb{C}$ for $\lambda_i \in \mathbb{C}, 1 \leq i \leq n$. Then $\sigma[P(T_1, T_2, ..., T_n)] = \sigma(T_1 \otimes T_2 \otimes \cdots \otimes T_n)$.

Proof. In[2], Brown and Pearcy show that $\sigma(T_1 \otimes T_2 \otimes \cdots \otimes T_n) = \sigma(T_1)\sigma(T_2)\cdots\sigma(T_n)$, where $T_1 \otimes T_2 \otimes \cdots \otimes T_n$ is the tensor product operator of T_1, T_2, \cdots, T_n on $X = X_1 \overline{\otimes} X_2 \overline{\otimes} \cdots \overline{\otimes} X_n$. In [1], Martin Schechter show that $\sigma[P(T_1, T_2, \dots, T_n)] = P[\sigma(T_1), \sigma(T_2), \dots, \sigma(T_n)] = \sigma(T_1)\sigma(T_2)\cdots\sigma(T_n)$.

In [4, Corollary3], B.P.Rynne show that the spectrum of the operator $T_1 \otimes T_2 \otimes \cdots \otimes T_n$ on $X = X_1 \overline{\otimes} X_2 \overline{\otimes} \cdots \overline{\otimes} X_n$ is given by $\sigma(T_1 \otimes T_2 \otimes \cdots \otimes T_n) = \{\lambda_1 \lambda_2 \cdots \lambda_n \in \mathbb{C} | \lambda_i \in \sigma(T_i), 1 \leq i \leq n \}$. That implies; $\sigma(T_1 \otimes T_2 \otimes \cdots \otimes T_n) = \sigma(T_1)\sigma(T_2)\cdots\sigma(T_n)$.

Let η be an abelian Banach algebra with unit, containing the elements T_1, T_2, \ldots, T_n and let $h : \eta \to \mathbb{C}$ be a homomorphism. Then we can obtain the following result.

LEMMA 2.2. Let η be an abelian Banach algebra with unit, containing the elements T_1, T_2, \ldots, T_n . If $h: \eta \to \mathbb{C}$ is a homomorphism, and $P(T_1, T_2, \ldots, T_n)$ is a polynomial in n variables, then $h[P(T_1, T_2, \ldots, T_n)] = P[h(T_1, T_2, \ldots, T_n)]$.

Proof. Let $h[P(T_1, T_2, ..., T_n)] = h[k_1(T_1, T_2, ..., T_n) + k_2(T_1, T_2, ..., T_n)^2 + ... + k_n(T_1, T_2, ..., T_n)^n]$ for scalars $k_i, 1 \le i \le n$. Since h is a homomorphism, $h[k_1(T_1, T_2, ..., T_n) + k_2(T_1, T_2, ..., T_n)^2 + ... + k_n(T_1, T_2, ..., T_n)^n] = k_1 h(T_1, T_2, ..., T_n) + k_2 h(T_1, T_2, ..., T_n)^2 + ... + k_n h(T_1, T_2, ..., T_n)^n = P[h(T_1, T_2, ..., T_n)]$. This means that $h[P(T_1, T_2, ..., T_n)] = P[h(T_1, T_2, ..., T_n)]$.

Let $P(B_1, B_2, ..., B_n)$ be a polynomial in n variables such that $P(B_1, B_2, ..., B_n)$

 \ldots, B_n) = $B_1 \times B_2 \times \cdots \times B_n = \{z = (a_1, a_2, \ldots, a_n) | a_i \in B_i, 1 \le i \le n\}$. Let us state the following result.

THEOREM 2.3. Let X_i be a complex Banach space and $X_1 \overline{\otimes} X_2 \overline{\otimes} \cdots \overline{\otimes} X_n$ the completion of the tensor product $X_1 \otimes X_2 \otimes \cdots \otimes X_n$ with respect to some cross norm and let $T_i \in BL(X_i), 1 \leq i \leq n$. Suppose that η is an abelian Banach algebra with unit, containing the elements T_1, T_2, \ldots, T_n and $\lambda_i = h(T_i)$ for some homomorphism, h for $\lambda_i \in \mathbb{C}, 1 \leq i \leq n$. Then $\sigma[P(T_1, T_2, \ldots, T_n)] = P[(\sigma(T_1), \sigma(T_2), \ldots, \sigma(T_n))] = \sigma(T_1, T_2, \ldots, T_n)$.

Proof. By [7, Theorem 2.5], $\sigma[P(T_1, T_2, ..., T_n)] = P[(\sigma(T_1), \sigma(T_2), ..., \sigma(T_n))].$

Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \sigma[P(T_1, T_2, \dots, T_n)]$. Then by Gelfand's theorem, there exists a homomorphism $h : \eta \to \mathbb{C}$ such that $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) = h[P(T_1, T_2, \dots, T_n)]$.

Since $\lambda_i = h(T_i)$ for some homomorphism $h, \lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) = h[P(T_1, T_2, \dots, T_n)] \in \sigma(T_1, T_2, \dots, T_n)$ ([7]).

Similarly, if $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \sigma(T_1, T_2, \dots, T_n)$, then $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \sigma[P(T_1, T_2, \dots, T_n)]$. This means that $\sigma[P(T_1, T_2, \dots, T_n)] = \sigma(T_1, T_2, \dots, T_n)$.

The projection property of the joint spectrum is given by the relation $\pi[\sigma(T_1, T_2, \ldots, T_n)] = \sigma(T_1, T_2, \ldots, T_k), k < n$, where π is the projection of \mathbb{C}^n onto \mathbb{C}^k given by $\pi(\lambda_1, \lambda_2, \ldots, \lambda_n) = (\lambda_1, \lambda_2, \ldots, \lambda_k)$.

Then we can obtain the following result from theorem 2.3.

COROLLARY 2.4. Let X_i be a complex Banach space and $X_1 \overline{\otimes} X_2 \overline{\otimes} \cdots \overline{\otimes} X_n$ the completion of the tensor product space $X_1 \otimes X_2 \otimes \cdots \otimes X_n$ with respect to some cross norm. Suppose that η is an abelian Banach algebra with unit containing the elements T_1, T_2, \ldots, T_n for $T_i \in BL(X_i), 1 \leq i \leq n$ and $\lambda_i = h(T_i)$ for some homomorphism h for $\lambda_i \in \mathbb{C}, 1 \leq i \leq n$. If π is the projection of \mathbb{C}^n onto \mathbb{C}^k given by $\pi(\lambda_1, \lambda_2, \ldots, \lambda_n) = (\lambda_1, \lambda_2, \ldots, \lambda_k), k < n$, then $\pi[\sigma(T_1, T_2, \ldots, T_n)] = \sigma(T_1, T_2, \ldots, T_k), k < n$.

Proof. By Theorem 2.3, $\sigma[P(T_1, T_2, \ldots, T_n)] = \sigma(T_1, T_2, \ldots, T_n)$ holds. Since π is the projection of \mathbb{C}^n onto \mathbb{C}^k , we have $\pi[\sigma(P(T_1, T_2, \ldots, T_n))] = \sigma(T_1, T_2, \ldots, T_k), k < n$.

Let us state the following result by the spectral mapping theorem.

THEOREM 2.5. Let H_j be complex Hilbert spaces, $1 \leq j \leq n$ and $H = H_1 \otimes H_2 \otimes \cdots \otimes H_n$ and let $T_j \in BL(H_j)$, $\widetilde{T}_j = I_1 \otimes I_2 \otimes \cdots \otimes T_j \otimes I_{j+1} \otimes \cdots \otimes I_n$, where I_j is the identity operator on H_j , $1 \leq j \leq n$ and $\widetilde{T} = (\widetilde{T}_1, \widetilde{T}_2, \ldots, \widetilde{T}_n) \in BL(H)$.

If f is an analytic function on an open neighborhood G of $\sigma(\widetilde{T}, H) = \sigma(\widetilde{T})$ into \mathbb{C}^n , then $\sigma(f(\widetilde{T}_1, \widetilde{T}_2, \dots, \widetilde{T}_n)) = f(\sigma(T_1 \otimes T_2 \otimes \dots \otimes T_n, H))$.

Proof. Since f is any analytic function on an open neighborhood G of $\sigma(\widetilde{T},H)$ in to \mathbb{C}^n , by spectral mapping theorem, $\sigma(f(\widetilde{T}_1,\widetilde{T}_2,\ldots,\widetilde{T}_n))=f(\sigma(\widetilde{T}_1,\widetilde{T}_2,\ldots,\widetilde{T}_n))$ holds. In [3], A.T. Dash and M. Schechter have shown that $\sigma(\widetilde{T}_1,\widetilde{T}_2,\ldots,\widetilde{T}_n)=\sigma(T_1,H_1)\times\sigma(T_2,H_2)\times\cdots\times\sigma(T_n,H_n)$. This implies that $f(\sigma(\widetilde{T}_1,\widetilde{T}_2,\ldots,\widetilde{T}_n))=f(\sigma(T_1,H_1)\times\sigma(T_2,H_2)\times\cdots\times\sigma(T_n,H_n))$. In [6, 2.6 Corollary], Zoia Ceausescu and F.H. Vasilescu have shown that $\sigma(T_1,H_1)\times\sigma(T_2,H_2)\times\cdots\times\sigma(T_n,H_n)=\sigma(T_1\otimes T_2\otimes\cdots\otimes T_n,H)$. This means that $f(\sigma(T_1,H_1)\times\sigma(T_2,H_2)\times\cdots\times\sigma(T_n,H_n))=f(\sigma(T_1\otimes T_2\otimes\cdots\otimes T_n,H))$. We obtain the desired result.

References

- [1] Martin Schechter, On the Spectra of Operators on Tensor Products, Journal of Functional Analysis 4(1969), 95-99
- [2] Arlen Brown and Carl Pearcy, Spectra of Tensor Products of Operators, Proc.Amey. Math. Soc. 17(1966), 162-165.
- [3] A.T.Dash and M. Schechter, Tensor Products and Joint Spectra, Israel J. Math. Vol.8(1970), 191-193.
- [4] B.P.Rynne, Tensor Products and Taylors' Joint Spectrum in Banach spaces, R. Ir. Acad. Vol.87A, No.1,(1987), 83-88.
- [5] Takashi Ichinose, Spectra Properties of Tensor Products of Linear Operators,
 I. Transactions of the America mathematical Society, Volume 235,(1978), 75-81
- [6] Zoia Ceausescu and F.H. Vasilescu, Tensor Products and Taylors' Joint Spectrum, Studia Mathematica, T.LX II.(1978), 305-310.
- [7] L.A.Couburn and Martin Schechter, Joint Spectra and Interpolation of Operators, Journal of Functional Analysis2,(1968), 226-237.
- [8] I. Gohberg/s. Goldberg/M.A.Kaashoek, Classes of Linear Operators Vol. 1, 1990.

Department of Mathematic Education Kangwon National University Chuncheon, 200–701, Korea *E-mail*: dslee@cc.kangwon.ac.kr