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HARMONIC MORPHISMS AND STABLE MINIMAL

SUBMANIFOLDS

Gundon Choi and Gabjin Yun∗†

Abstract. In this article, we study the relations of horizontally
conformal maps and harmonic morphisms with the stability of min-
imal fibers. Let ϕ : (Mn, g) → (Nm, h) be a horizontally conformal
submersion. There is a tensor T measuring minimality or totally
geodesics of fibers of ϕ. We prove that if T is parallel and the
horizontal distribution is integrable, then any minimal fiber of ϕ is
volume-stable. As a corollary, we obtain that any fiber of a sub-
mersive harmonic morphism whose fibers are totally geodesics and
the horizontal distribution is integrable is volume-stable. As a conse-
quence, we obtain if ϕ : (Mn, g) → (N2, h) is a submersive harmonic
morphism of minimal fibers from a compact Riemannian manifold
M into a surface N , T is parallel and the horizontal distribution is
integrable, then ϕ is energy-stable.

1. Introduction

The theory of harmonic morphisms is one of particularly interesting
subclasses of harmonic maps. A harmonic map ϕ : (M, g) → (N, h) be-
tween Riemannian manifolds is a critical point of the energy functional
defined on each compact domain of M . A harmonic morphism between
Riemannian manifolds is a map preserving harmonic structure. In other
words, a map ϕ : (Mn, g) → (Nm, h) is called a harmonic morphism
if for any harmonic function f defined on an open subset V ⊂ N such
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that ϕ−1(V ) 6= ∅, the composition f ◦ ϕ : ϕ−1(V ) → R is also har-
monic. Harmonic morphisms are characterized as harmonic maps which
are horizontally (weakly) conformal ([3], [6]).

Let ϕ : (Mn, g) → (Nm, h) be a harmonic morphism between Rie-
mannian manifolds. Then it is well-known ([1]) that if dim(N) = m = 2,
the regular fibers of ϕ are minimal submanifolds of M and if dim(N) =
m ≥ 3, ϕ has minimal fibers if and only if it is horizontally homothetic.

A minimal submanifold of a Riemannian manifold is a submanifold
whose mean curvature defined as the trace of the second fundamental
form determined by a normal vector field is vanishing. Or, equivalently,
a minimal submanifold is a critical point of the volume functional defined
on the variation of each compact domain. On the other hand, a minimal
submanifold of a Riemannian manifold is called stable (or volume-stable)
if the second derivative of the volume functional is non-negative for any
normal variation with compact support. Not much results for stable
minimal submanifolds are known compared with minimal submanifolds.

In this paper, we studied the stability of minimal fibers of harmonic
morphisms and horizontally (weakly) conformal maps between Riemann-
ian manifolds. Given a horizontally (weakly) conformal map
ϕ : (Mn, g) → (Nm, h) with n ≥ m, there is a (2, 1)-tensor T defined
originally by O’Neill ([12]) measuring whether the fibers of ϕ are mini-
mal or totally geodesic (see section 2 for definition). In fact, it is easy
observation that the fibers of ϕ are totally geodesic if and only if T van-
ishes. We say the tensor T is parallel if the covariant derivative of T with
respect to any vector field is vanishing. Thus, if a horizontally (weakly)
conformal map ϕ : (Mn, g) → (Nm, h) has totally geodesic fibers, then
T is automatically parallel.

Let ϕ : (Mn, g) → (Nm, h) be a horizontally conformal submersion.
If the dimension of N is one and T is parallel, then we could show any
minimal fiber is volume-stable. In case the dimension of N is two, if T
is parallel and the horizontal distribution is integrable, then any regular
fiber is volume-stable. And in case dim(N) = m > 2, if the horizontal
distribution is integrable, any minimal fiber is volume-stable. Conse-
quently, if ϕ : (Mn, g) → (Nm, h) is a submersive harmonic morphism
with totally geodesic fibers and the horizontal distribution is integrable,
then all the fibers are volume-stable.
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Finally, we would like to mention a result due to Montaldo ([11]) that
if a submersive harmonic morphism ϕ : (Mn, g) → (N2, h) from a com-
pact Riemannian manifold to a surface has volume-stable minimal fibers,
then ϕ is energy-stable, i.e., the second derivative of the energy func-
tional is non-negative for any variation. Therefore, we could conclude
that if ϕ : (Mn, g) → (N2, h) is a submersive harmonic morphism to a
surface, and if T is parallel and the horizontal distribution is integrable,
then ϕ is energy-stable.

Finally, we would like to remark that our main result can be deduced
from the theory of foliation (cf. [4], [13]).

2. Preliminaries

In this section, we shall describe basic notions for horizontally (weakly)
conformal maps and stability of minimal submanifolds.

Let ϕ : (Mn, g) → (Nm, h) be a smooth map between Riemannian
manifolds (M, g) and (N, h). For a point x ∈ M , we set Vx = ker(dϕx).
The space Vx is called the vertical space at x. Let Hx denote the or-
thogonal complement of Vx in the tangent space TxM . For a tangent
vector X ∈ TxM , we denote XV and XH, respectively, the vertical com-
ponent and the horizontal component of X. Let V and H denote the
corresponding vertical and horizontal distributions in the tangent bun-
dle TM . We say that ϕ is horizontally (weakly) conformal if, for each
point x ∈ M at which dϕx 6= 0, the restriction dϕx|Hx : Hx → Tϕ(x)N
is conformal and surjective. Thus there exists a non-negative function λ
on M such that

h(dϕ(X), dϕ(Y )) = λ2g(X, Y )

for horizontal vectors X, Y . The function λ is called the dilation of ϕ.
Note that λ2 is smooth and is equal to |dϕ|2/m, where m = dim(N).

Let ϕ : Mn → Nm be a horizontally (weakly) conformal map be-
tween Riemannian manifolds (M, g) and (N, h). Denote the set of criti-
cal points of ϕ by Cϕ = {x ∈ M : dϕx = 0} and let M∗ = M − Cϕ. We
define two tensors T and A over M∗ by

TEF = (∇EVF
V)H + (∇EVF

H)V

and

AEF = (∇EHFH)V + (∇EHF V)H
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for vector fields E and F on M . Here ∇ denotes the Levi-Civita con-
nection on M .

A smooth map ϕ : (Mn, g) → (Nm, h) between Riemannian manifolds
M and N of dimensions n and m, respectively, is called a harmonic
morphism if ϕ preserves the harmonic structures of (M, g) and (N, h).
In other words, ϕ : (Mn, g) → (Nm, h) is a harmonic morphism if it pull
backs local harmonic functions to harmonic functions. It is well-known
([3], [6]) that a smooth map ϕ : M → N is a harmonic morphism if and
only if ϕ is both harmonic and horizontally (weakly) conformal.

Let Mn be an n-dimensional complete Riemannian manifold and let P
be a k-dimensional immersed submanifold of M . Then the tangent space
of M can be decomposed into

TM = TP ⊕ TP⊥.

Define, for two tangent vectors X, Y on P , i.e., sections of TP , the
symmetric 2-tensor B(X, Y ) by

B(X, Y ) = (∇XY )⊥ = (∇XY )H = TXY,

where ∇ is the Levi-Civita connection on M and ⊥ denotes the normal
component. We say P is minimal if the mean curvature

k∑
i=1

B(ei, ei) =
k∑

i=1

Tei
ei = 0,

where {ei, · · · , ek} is a local orthonormal frame on P .
Let E be a normal vector field on P with compact support. Then the

second derivative of the volume functional A in the direction E ([9]) is
given by

A′′
E(0) =

∫

P

〈−∆E +R(E)− B(E), E〉.(2.1)

Introducing a local orthonormal basis {e1, · · · , ek, ξk+1, · · · , ξn} on TM
such that {ξk+1, · · · , ξn} is a local orthonormal frame on TP⊥, the equa-
tion (2.1) becomes

A′′
E(0) =

∫

P

|∇⊥E|2 −
k∑

i=1

〈R(ei, E)E, ei〉 −
k∑

i,j=1

〈B(ei, ej), E〉2(2.2)
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Here ∇⊥ denotes the normal connection on TP⊥. In other words,

R(E) =
n−2∑
i=1

R(ei, E)ei

and

〈B(E), E〉 =
k∑

i,j=1

〈B(ei, ej), E〉2.(2.3)

Generally, the operator B is given by

〈B(E), F 〉 =
k∑

i,j=1

〈B(ei, ej), E〉〈B(ei, ej), F 〉

and it is well-known that P is totally geodesic if and only if B = 0 and
hence B = 0.

We say a minimally immersed submanifold P of M is stable (or
volume-stable) if, for any normal variation E with compact support,
the second derivative of the volume functional in the direction E is non-
negative, i. e.,

A′′
E(0) ≥ 0.

3. Basic Formulae

Using curvature formula for horizontally (weakly) conformal maps, we
shall derive an integral formula for the second derivative of the volume
functional for the fibers of horizontally conformal maps.

Let ϕ : Mn → Nm be a horizontally (weakly) conformal map between
Riemannian manifolds (M, g) and (N, h). Suppose for a point z ∈ N , the
fiber P := ϕ−1(z) is a k-dimensional minimal submanifold of M . Then
the tangent vectors to P correspond vertical vectors of ϕ and normal
vectors to P correspond to horizontal vectors of ϕ. From now we shall
carry out some computations for the integrands in the second derivative
of the volume functional for the minimal submanifold P . First of all,
note that if E is a normal vector field on P ,

∣∣∇⊥E
∣∣2 =

k∑
i=1

∣∣∇⊥
ei
E

∣∣2 =
k∑

i=1

∣∣∣
(∇ei

E
)⊥∣∣∣

2

=
k∑

i=1

∣∣∣
(∇ei

E
)H∣∣∣

2

.(3.1)
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Next, recall that

〈R(E), E〉 =
k∑

i=1

〈R(ei, E)ei, E〉 = −
k∑

i=1

〈R(ei, E)E, ei〉

= −|E|2
k∑

i=1

KM

(
E

|E| ∧ ei

)
,

where KM

(
E

|E| ∧ ei

)
is the sectional curvature of the plane spanned by

E
|E| and ei on M .

By [5] or [8], the sectional curvature is given by

KM

(
E

|E| ∧ ei

)
=

∣∣∣A E
|E|

ei

∣∣∣
2

−
∣∣∣∣Tei

E

|E|

∣∣∣∣
2

+

〈(
∇ E

|E|
T

)
ei

ei,
E

|E|
〉

(3.2)

−1

2

〈∇ log λ2, ei

〉2
+

1

2

〈
∇ei

(∇ log λ2
)V

, ei

〉
,

where ∇ denotes the gradient on M . So the gradient on P is the vertical
component of the gradient on M . In other words,

∇P f = (∇f)V .

Thus from now on, we shall use the confused notation for the gradient
on M and P since there are no ambiguities.

By definitions of tensors A and T , one obtains

A E
|E|

ei =
(
∇ E

|E|
ei

)H
=

1

|E|
(∇Eei

)H
=

1

|E|AEei.(3.3)

So,
∣∣∣A E

|E|
ei

∣∣∣
2

=
1

|E|2
∣∣∣
(∇Eei

)H∣∣∣
2

=
1

|E|2
∣∣∣
(∇Eei

)⊥∣∣∣
2

.(3.4)

Tei

E

|E| =

(
∇ei

E

|E|
)V

=

(
1

|E|∇ei
E + ei

(
1

|E|
)

E

)V
(3.5)

=
1

|E|
(∇ei

E
)V

(3.6)

So,
∣∣∣∣Tei

E

|E|

∣∣∣∣
2

=
1

|E|2
∣∣∣
(∇ei

E
)V∣∣∣

2

=
1

|E|2 |Tei
E|2 .(3.7)
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Lemma 3.1.
(
∇ E

|E|
T

)
ei

ei =
1

|E|
(∇ET

)
ei

ei.(3.8)

Proof. It follows from the fact that T is a tensor. In fact,
(
∇ E

|E|
T

)
ei

ei = ∇ E
|E|

Tei
ei − T∇ E

|E|
ei
ei − Tei

∇ E
|E|

ei

=
1

|E|∇ETei
ei − 1

|E|T∇Eei
ei − Tei

(
1

|E|∇Eei

)

Also since T is a tensor, we have

Tei

(
1

|E|∇Eei

)
=

1

|E|Tei
∇Eei.

Therefore,
(
∇ E

|E|
T

)
ei

ei =
1

|E|
(∇ET

)
ei

ei.

Hence

〈R(E), E〉 = −
k∑

i=1

∣∣∣
(∇Eei

)H∣∣∣
2

+
k∑

i=1

∣∣∣
(∇ei

E
)V∣∣∣

2

−
〈(∇ET

)
ei

ei, E
〉

(3.9)

+
|E|2
2

k∑
i=1

〈∇ log λ2, ei

〉2 − |E|2
2

k∑
i=1

〈
∇ei

(∇ log λ2
)V

, ei

〉
.

Finally, by (2.3) and definition of the second fundamental form B,

〈B(E), E〉 =
k∑

i,j=1

〈B(ei, ej), E〉2 =
k∑

i,j=1

〈(∇ei
ej

)H
, E〉2

=
k∑

i,j=1

〈∇ei
ej, E〉2 =

k∑
i,j=1

〈ej,∇ei
E〉2 =

k∑
i=1

∣∣∣
(∇ei

E
)V∣∣∣

2

.(3.10)
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Therefore, from (2.2), (3.1), (3.9) and (3.10),

A′′
E(0) =

∫

P

k∑
i=1

(∣∣∣
(∇ei

E
)H∣∣∣

2

−
∣∣∣
(∇Eei

)H∣∣∣
2
)

+

∫

P

k∑
i=1

〈(∇ET
)

ei
ei, E

〉
(3.11)

+

∫

P

{
|E|2
2

k∑
i=1

〈∇ log λ2, ei〉2 − |E|2
2

k∑
i=1

〈
∇ei

(∇ log λ2
)V

, ei

〉}

Before closing this section, we shall prove a basic property for covari-
ant derivatives of a horizontal vector field and a vertical vector field of
a horizontally weakly conformal map. This fact will be used in later
sections.

Lemma 3.2. Let ϕ : (Mn, g) → (Nm, h) be a horizontally conformal
submersion. If X is a horizontal vector field and V is a vertical vector
field on M , then ∣∣∣

(∇V X
)H∣∣∣

2

=
∣∣∣
(∇XV

)H∣∣∣
2

.

Proof. Since X is a horizontal vector field and V is a vertical vector
field, it is easy to see that

[X, V ] = ∇XV −∇V X

is a vertical vector field and so
(∇XV −∇V X

)H
= 0.

4. Codimension 1 and 2

In this section, we consider horizontally conformal submersions or
submersive harmonic morphisms having vertical fibers of codimension
one or two. In low codimensional case, one can obtain some conditions
that a minimal fiber of a harmonic morphism or horizontally conformal
submersion is to be volume-stable.

First, let ϕ : (Mn, g) → (N1, h) be a horizontally conformal submer-
sion with dilation λ, where N is an one-dimensional manifold. Suppose



Harmonic morphisms and stable minimal submanifolds 21

for a point t ∈ N , ϕ−1(t) := P is a minimal hypersurface in M . Intro-
ducing a local orthonormal frame {e1, · · · , en−1, ξ} on M such that ξ is
an unit normal vector field to P , the equation (3.11) becomes

A′′
E(0) =

∫

P

n−1∑
i=1

(∣∣∣
(∇ei

E
)H∣∣∣

2

−
∣∣∣
(∇Eei

)H∣∣∣
2
)(4.1)

+

∫

P

n−1∑
i=1

〈(∇ET
)

ei
ei, E

〉

+

∫

P

{
|E|2
2

n−1∑
i=1

〈∇ log λ2, ei〉2 − |E|2
2

n−1∑
i=1

〈
∇ei

(∇ log λ2
)V

, ei

〉}

for any normal vector field E with compact support. We may assume ξ
is a horizontal vector field on P with unit length, i. e.,

dϕ(ξ) = λ
d

dt
,(4.2)

where t is the standard coordinate so that
d

dt
is an unit vector field on

N .

Lemma 4.1. Let ϕ : (Mn, g) → (Nm, h) be a horizontally conformal
submersion with dilation λ. Assume P := ϕ−1(z), z ∈ N is a submani-
fold of M . Then

λ2∆P

(
1

λ2

)
=

∣∣∣
(∇ log λ2

)V∣∣∣
2

− divP (∇ log λ2)V ,

where ∆P and divP denote the Laplacian and divergence on P , respec-
tively, and ∇ denotes the gradient on M .

Proof. With the notation as in (4.2) and a local orthonormal frame

{e1, · · · , en−1, ξ} on M , let X =
1

λ
ξ so that λ2|X|2 = 1. Then the deriv-

ative in the direction ei becomes

0 = ei(λ
2|X|2)

and so

ei(|X|2) = −ei(λ
2)

λ2
|X|2 = −|X|2ei(log λ2).

Thus, (∇|X|2)V = −|X|2 (∇ log λ2
)V

,
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In fact, the following identity holds between M and P :

(∇f)V = ∇P f =
n−1∑
i=1

ei(f)ei (locally)

for any function f defined on M .
Now by definition of the Laplacian,

∆P |X|2 = divP

(∇|X|2)V = −〈(∇|X|2)V ,
(∇ log λ2

)V〉 − |X|2divP

(∇ log λ2
)V

.

Since λ2

(
∇

(
1

λ2

))V
= − (∇ log λ2

)V
, one obtains

(∇|X|2)V =

(
∇

(
1

λ2

))V
= − 1

λ2

(∇ log λ2
)V

.(4.3)

Hence

∆P

(
1

λ2

)
= ∆P (|X|2) =

1

λ2

∣∣∣
(∇ log λ2

)V∣∣∣
2

− 1

λ2
divP

(∇ log λ2
)V

,

That is,

λ2∆P

(
1

λ2

)
=

∣∣∣
(∇ log λ2

)V∣∣∣
2

− divP

(∇ log λ2
)V

.

Theorem 4.2. Let ϕ : (Mn, g) → (N1, h) be a horizontally conformal
submersion and suppose P = ϕ−1(t), t ∈ N is a minimal hypersurface of
M . If T is parallel, then P is volume-stable.

Proof. Writing E = fξ, one has
(∇ei

E
)H

= ei(f)ξ + f
(∇ei

ξ
)H

.

Since the codimension of P is one and ξ is an unit vector field,

〈ξ,∇ei
ξ〉 = 0

and so (∇ei
ξ
)H

= 0.

Thus,
n−1∑
i=1

∣∣∣
(∇ei

E
)H∣∣∣

2

=
∣∣(∇f)V

∣∣2 .
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Now since ξ is a horizontal vector field, it follows from Lemma 3.2 that
(∇ξei

)H
=

(∇ei
ξ
)H

= 0

and so ∣∣∣
(∇Eei

)H∣∣∣
2

= f 2
∣∣∣
(∇ξei

)H∣∣∣
2

= 0.

Therefore by Lemma 4.1 and the equation (4.1),

A′′
E(0) =

∫

P

∣∣∣(∇f)V
∣∣∣
2

+
1

2

∫

P

f 2

[∣∣∣
(∇ log λ2

)V∣∣∣
2

− divP (∇ log λ2)V
]

=

∫

P

∣∣∣(∇f)V
∣∣∣
2

+
1

2

∫

P

f 2λ2∆

(
1

λ2

)
.(4.4)

Now assume P is compact without boundary or P is non-compact and
f has compact support. Applying the integration by parts, one has

1

2

∫

P

f 2λ2∆

(
1

λ2

)
= −1

2

∫

P

〈
∇(f 2λ2),∇

(
1

λ2

)〉

= −1

2

∫

P

〈
λ2∇f 2 + f 2∇λ2,∇

(
1

λ2

)〉

=
1

2

∫

P

〈
∇f 2,

(∇ log λ2
)V〉− 1

2

∫

P

f 2

〈
∇λ2,∇

(
1

λ2

)〉

=

∫

P

f
〈
∇f,

(∇ log λ2
)V〉

+ 2

∫

P

f 2 |∇λ|2
λ2

=

∫

P

f
〈
∇f,

(∇ log λ2
)V〉

+
1

2

∫

P

f 2
∣∣∣
(∇ log λ2

)V∣∣∣
2

.

Here∇ denotes the gradient on P (Actually, we used a confused notation
for gradients on P and M , but there are no ambiguities).

By Schwarz inequality,∫

P

f
〈
∇f,

(∇ log λ2
)V〉

+
1

2

∫

P

f 2
∣∣∣
(∇ log λ2

)V∣∣∣
2

≥ −1

2

∫

P

(
|∇f |2 + f 2

∣∣∣
(∇ log λ2

)V∣∣∣
2
)

+
1

2

∫

P

f 2
∣∣∣
(∇ log λ2

)V∣∣∣
2

= −1

2

∫

P

|∇f |2

Hence by (4.4),

A′′
E(0) =

1

2

∫

P

∣∣∣(∇f)V
∣∣∣
2

≥ 0.



24 Gundon Choi and Gabjin Yun

Corollary 4.3. Let ϕ : (Mn, g) → (N1, h) be a horizontally confor-
mal submersion whose fibers are totally geodesics. Then every fiber P
is volume-stable.

Now, let ϕ : (Mn, g) → (N2, h) be a horizontally conformal sub-
mersion with dilation λ, and N is a two-dimensional Riemannian man-
ifold. Suppose for a point t ∈ N , ϕ−1(t) := P is a minimal submani-
fold of M with codimension 2. Introducing a local orthonormal frame
{e1, · · · , en−2, ξ1, ξ2} on M such that ξ1 and ξ2 are unit normal vector
fields to P , the equation (3.11) becomes

A′′
E(0) =

∫

P

n−2∑
i=1

(∣∣∣
(∇ei

E
)H∣∣∣

2

−
∣∣∣
(∇Eei

)H∣∣∣
2
)

+

∫

P

n−2∑
i=1

〈(∇ET
)

ei
ei, E

〉
(4.5)

+

∫

P

{
|E|2
2

n−2∑
i=1

〈∇ log λ2, ei〉2 − |E|2
2

n−2∑
i=1

〈
∇ei

(∇ log λ2
)V

, ei

〉}

for any normal vector field E on P with compact support.
Let X̌1 and X̌2 be a local orthonormal frame on N and X1 and X2

be their horizontal lifts, respectively. Define

ξi =
X i

|X i|
.

Since Xj (and so ξj) is horizontal vector field and ei is vertical, it follows
from Lemma 3.2 that

(∇ei
ξj

)H
=

(∇ξj
ei

)H
.(4.6)

Also the following lemma is well-known ([5], [8]).

Lemma 4.4. One has
(∇ξ1ξ2

)V
=

1

2
[ξ1, ξ2]

V .

Note that, in fact,
(∇ξ1ξ2

)V
= Aξ1ξ2.

Lemma 4.5. 〈∇ei
ξ1, ξ2

〉
= −1

2

〈
[ξ1, ξ2]

V , ei

〉
.
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Proof. Since ei is vertical (tangent to P ) and ξj is horizontal (normal
to P ), it follows from Lemma 4.4 and the equation (4.6) that

〈∇ei
ξ1, ξ2

〉
=

〈(∇ei
ξ1

)H
, ξ2

〉
=

〈(∇ξ1ei

)H
, ξ2

〉
=

〈∇ξ1ei, ξ2

〉

= −
〈(∇ξ1ξ2

)V
, ei

〉
= −1

2

〈
[ξ1, ξ2]

V , ei

〉
.

Let E be a normal vector field on P and write

E = f1ξ1 + f2ξ2

on P . Then

(∇ei
E

)H
=

2∑
j=1

ei(fj)ξj +
2∑

j=1

fj

(∇ei
ξj

)H
.

Since ξ1 and ξ2 are unit normal vector fields,

〈
ξj,∇ei

ξj

〉
= 0 (j = 1, 2).(4.7)

So,

∣∣∣
(∇ei

E
)H∣∣∣

2

=
2∑

j=1

{
ei(fj)

2 + f 2
j

∣∣∣
(∇ei

ξj

)H∣∣∣
2
}

+
2∑

j=1

{
2f2ei(f1)

〈
ξ1,∇ei

ξ2

〉
+ 2f1ei(f2)

〈
ξ2,∇ei

ξ1

〉}

+
2∑

j=1

{
2f1f2

〈(∇ei
ξ1

)H
,
(∇ei

ξ2

)H〉}
.

On the other hand, since
(∇Eei

)H
=

2∑
j=1

fj

(∇ξj
ei

)H
, one has

∣∣∣
(∇Eei

)H∣∣∣
2

=
2∑

j=1

f 2
j

∣∣∣
(∇ξj

ei

)H∣∣∣
2

+ 2f1f2

〈(∇ξ1ei

)H
,
(∇ξ2ei

)H〉
.
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Thus
∣∣∣
(∇ei

E
)H∣∣∣

2

−
∣∣∣
(∇Eei

)H∣∣∣
2

=
2∑

j=1

ei(fj)
2 + 2(f1ei(f2)− f2ei(f1))

〈∇ei
ξ1, ξ2

〉

and so

n−2∑
i=1

∣∣∣
(∇ei

E
)H∣∣∣

2

−
∣∣∣
(∇Eei

)H∣∣∣
2

=
2∑

j=1

|∇fj|2 + 2
n−2∑
i=1

(f1ei(f2)− f2ei(f1))
〈∇ei

ξ1, ξ2

〉
.

Moreover, it follows from Lemma 4.5 that

n−2∑
i=1

(f1ei(f2)− f2ei(f1))
〈∇ei

ξ1, ξ2

〉

= −1

2

n−2∑
i=1

(f1ei(f2)− f2ei(f1))
〈
[ξ1, ξ2]

V , ei

〉

= −1

2

〈
[ξ1, ξ2]

V , f1∇f2 − f2∇f1

〉
.

Thus,

∑n−2
i=1

∣∣∣
(∇ei

E
)H∣∣∣

2

−
∣∣∣
(∇Eei

)H∣∣∣
2

=
∑2

j=1 |∇fj|2 −
〈
[ξ1, ξ2]

V , f1∇f2 − f2∇f1

〉
.(4.8)

Consequently, by (4.1), (4.8) and Lemma 4.1,

A′′
E(0) =

∫

P

{
2∑

j=1

|∇fj|2 −
〈
[ξ1, ξ2]

V , f1∇f2 − f2∇f1

〉
+
|E|2
2

λ2∆

(
1

λ2

)}(4.9)

+

∫

P

n−2∑
i=1

〈(∇ET
)

ei
ei, E

〉

and |E|2 = f 2
1 + f 2

2 .
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Theorem 4.6. Let ϕ : (Mn, g) → (N2, h) be a horizontally conformal
submersion with dilation λ, where N is a 2-dimensional Riemannian
manifold. Suppose P = ϕ−1(z), z ∈ N is a minimal submanifold of M .
If T is parallel and the horizontal distribution H is integrable, then P is
volume-stable.

Proof. Let E be a local normal vector field on P and assume E has
compact support if P is non-compact. By hypotheses, one has

∇ET = 0 and [ξ1, ξ2]
V = 0,(4.10)

where ξ1, ξ2 are horizontal vector fields on M which are projectable.
Thus, writing E = f1ξ1 + f2ξ2, one obtains, by (4.9),

A′′
E(0) =

∫

P

{
2∑

j=1

|∇fj|2 +
f 2

1 + f 2
2

2
λ2∆

(
1

λ2

)}
.(4.11)

Now as in the proof of Theorem 4.2, one can obtain, for each j = 1, 2,

1

2

∫

P

f 2
j λ2∆

(
1

λ2

)
≥ −1

2

∫

P

|∇fj|2.

Therefore,

A′′
E(0) ≥ 1

2

∫

P

2∑
j=1

|∇fj|2 ≥ 0.

Remark 4.7. Since the singular point of a smooth map ϕ : (Mn, g) →
(N2, h) is discrete, Theorem 4.6 could hold without the condition that
ϕ is a submersion. In fact, if ϕ : (Mn, g) → (N2, h) is a horizontally
weakly conformal map with dilation λ, and a fiber P = ϕ−1(z), z ∈
N is a minimal submanifold of M , then any fiber near z is a smooth
submanifold of M . Thus, every notion like a local frame and local vector
fields is well-defined. Therefore, in this case, if T is parallel and the
horizontal distribution H is integrable, then P is still volume-stable.

Corollary 4.8. Let ϕ : (Mn, g) → (N2, h) be a submersive har-
monic morphism from an n-dimensional Riemannian manifold Mn to a
2-dimensional Riemannian manifold N2. If T is parallel and the hori-
zontal distribution H is integrable, then any fiber is volume-stable.

Proof. Since dim(N) = 2 and ϕ is a harmonic morphism, it is well-
known ([1]) that any fiber is an (n−2)-dimensional minimal submanifold.
Thus the corollary follows from Theorem 4.6.
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Corollary 4.9. Let ϕ : (Mn, g) → (N2, h) be a submersive har-
monic morphism with totally geodesic fibers. If the horizontal distribu-
tion H is integrable, then any fiber is volume-stable.

Remark 4.10. In Theorem 4.6, Corollary 4.8 or Corollary 4.9, the
condition that the horizontal distribution H is integrable is indispens-
able. For instance, the Hopf map ϕ : S3 → S2 is a submersive harmonic
morphism with totally geodesic fibers, but the fibers are not volume-
stable.

In [11], Montaldo proved if a submersive harmonic morphism ϕ :
(Mn, g) → (N2, h) from a compact Riemannian manifold to a surface has
volume-stable minimal fibers, then ϕ is energy-stable, that is, the second
derivative of the energy functional is non-negative. Thus Corollary 4.8
and Corollary 4.9 imply the following corollaries.

Corollary 4.11. Let ϕ : (Mn, g) → (N2, h) be a submersive har-
monic morphism from a compact n-dimensional Riemannian manifold
Mn to a 2-dimensional Riemannian manifold N2. If T is parallel and
the horizontal distribution H is integrable, then ϕ is energy-stable har-
monic map.

Corollary 4.12. Let ϕ : (Mn, g) → (N2, h) be a submersive har-
monic morphism with totally geodesic fibers and M is compact. If the
horizontal distribution H is integrable, then ϕ is energy-stable.

The converse for Corollary 4.11 or Corollary 4.12 is not true anymore.
In fact, it is known ([11]) that the quotient map ϕ : RP 3 → S2 of the
Hopf map ϕ : S3 → S2 is energy-stable, but the horizontal distribution
of ϕ is not integrable.

5. Higher Codimensions and Harmonic p-forms

In the previous section, we considered a horizontally conformal sub-
mersion or a harmonic morphism of codimension one or two. In this
section, we shall consider general higher codimensional case.

Let ϕ : (Mn, g) → (Nm, h) be a horizontally conformal submersion
with dilation λ from an n-dimensional Riemannian manifold Mn to an
m-dimensional Riemannian manifold Nm. Suppose n ≥ m ≥ 3. In case
that ϕ is a harmonic morphism, it is well-known ([1]) that ϕ has minimal
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fibers if and only if ϕ is horizontally homothetic, i.e., the horizontal
component of the gradient of the dilation is vanishing.

Let X̌1, · · · , X̌m be a local orthonormal frame on N and let X1, · · · , Xm

be their horizontal lifts. Set

ξj =
Xj

|Xj| =
Xj

λ

so that ξ1, · · · , ξm form a local orthonormal frame on horizontal distri-
bution H. Let k = n −m and assume P := ϕ−1(z), z ∈ N is a smooth
submanifold of M . Then near z the fibers of ϕ are also smooth subman-
ifolds of M . Choose a local orthonormal frame {e1, · · · , ek} on vertical
distribution V near z so that {e1, · · · , ek, ξ1, · · · , ξm} forms a local or-
thonormal frame on TM .

Let E be a normal vector field on P with compact support and write

E =
m∑

j=1

fjξj.

As in the previous section, using Lemma 4.5, one can compute

k∑
i=1

(∣∣∣
(∇ei

E
)H∣∣∣

2

−
∣∣∣
(∇Eei

)H∣∣∣
2
)

=
m∑

j=1

|∇fj|2 +
n∑

j, l=1
j 6=l

〈
[ξj, ξl]

V , fj∇fj − fj∇fl

〉
,

where ∇ denotes the gradient on P . So, by Lemma 4.1 and the equation
(3.11),

A′′
E(0) =

m∑
j=1

∫

P

{
|∇fj|2 +

1

2
f 2

j λ2∆

(
1

λ2

)}

+
n∑

j, l=1
j 6=l

∫

P

〈
[ξj, ξl]

V , fj∇fj − fj∇fl

〉
+

∫

P

k∑
i=1

〈(∇ET
)

ei
ei, E

〉
.

As in the proof of Theorem 4.2, applying the integration by parts and
Schwarz inequality, one has, for each j = 1, · · · , m,

∫

P

f 2
j λ2∆

(
1

λ2

)
≥ −

∫

P

|∇fj|2.
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Hence

A′′
E(0) ≥ 1

2

m∑
j=1

∫

P

|∇fj|2 +
n∑

j, l=1
j 6=l

∫

P

〈
[ξj, ξl]

V , fj∇fj − fj∇fl

〉
(5.1)

+

∫

P

k∑
i=1

〈(∇ET
)

ei
ei, E

〉
.

Therefore one obtains the following theorem.

Theorem 5.1. Let ϕ : (Mn, g) → (Nm, h) be a horizontally con-
formal submersion from an n-dimensional Riemannian manifold Mn to
an m-dimensional Riemannian manifold Nm (n ≥ m ≥ 3). Suppose a
fiber of ϕ, P = ϕ−1(z), z ∈ N is a minimal submanifold of M . If the
horizontal distribution H is integrable and the tensor T is parallel, then
P is volume-stable.

Corollary 5.2. Let ϕ : (Mn, g) → (Nm, h) be a submersive har-
monic morphism with totally geodesic fibers. If the horizontal distribu-
tion H is integrable, then every fiber is volume-stable.

Remark 5.3. Let ϕ : (Mn, g) → (N2, h) be a horizontally conformal
submersion with dilation λ to a 2-dimensional manifold N and let P =
ϕ−1(z), z ∈ N is a smooth submanifold of M . Let E be a normal vector
field on P with compact support. Recall, by the equation (2.2), the
second derivative of the volume functional in the direction is given by

A′′
E(0) =

∫

P

|∇⊥E|2 −
n−2∑
i=1

〈R(ei, E)E, ei〉 −
n−2∑
i,j=1

〈B(ei, ej), E〉2,

where {e1, · · · , en−2} is a local orthonormal frame on vertical distribution
of ϕ.

Let {ξ1, ξ2} be a local orthonormal frame on the horizontal distri-
bution. Then it follows from the definition of Ricci curvature and
dim(N) = 2 that

n−2∑
i=1

〈R(ei, E)E, ei〉 = Ric(E,E) + |E|2〈R(ξ1, ξ2)ξ2, ξ1〉,
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where Ric and R denote the Ricci curvature and Riemannian curvature
tensor of M , respectively. Thus,

A′′
E(0) =

∫

P

|∇⊥E|2−Ric(E, E)+|E|2〈R(ξ1, ξ2)ξ2, ξ1〉−
n−2∑
i,j=1

〈B(ei, ej), E〉2,

On the other hand, if ϕ is horizontally homothetic, one can compute
([5], [8]) that

〈R(ξ1, ξ2)ξ2, ξ1〉 = λ2KN ◦ ϕ− 1

4

∣∣∣
(∇ log λ2

)V∣∣∣− 3

4

∣∣[ξ1, ξ2]
V∣∣2 ,

where KN denotes the sectional curvature of N . Hence if P is totally
geodesic, one obtains

A′′
E(0) =

∫

P

|∇⊥E|2 −Ric(E,E)(5.2)

+|E|2
(

λ2KN ◦ ϕ− 1

4

∣∣∣
(∇ log λ2

)V∣∣∣− 3

4

∣∣[ξ1, ξ2]
V∣∣2

)
.

Assume the Ricci curvature of M is non-positive and the sectional cur-
vature of N is non-negative. An easy observation is that if the horizontal
distribution is integrable and the dilation is constant, then the fiber is
volume-stable. In higher codimensional case, we can also a similar for-
mula as the equation (5.2).

Finally, we shall consider p-harmonic morphisms (p ≥ 2). A smooth
map ϕ : (Mn, g) → (Nm, h) between Riemannian manifolds is called a
p-harmonic map (p ≥ 2) if ϕ is a critical point of the p-energy functional

Ep(ϕ; Ω) =
1

p

∫

Ω

|dϕ|p dvg

for all compact subsets Ω ⊂ M .
A map ϕ : (Mn, g) → (Nm, h) is called a p-harmonic morphism if

it pulls back (local) p-harmonic functions on N to (local) p-harmonic
functions on M . In [10], Loubeau proved that a map ϕ : (Mn, g) →
(Nm, h) is a p-harmonic morphism if and only if it is a horizontally
weakly conformal p-harmonic map.

On the other hand, Jin and Mo ([7]) proved that if ϕ : (Mn, g) →
(Nm, h) is a horizontally conformal submersion whose fibers are all volume-
stable minimal submanifolds of a compact manifold M , then ϕ is an
energy-stable m-harmonic morphism, where m = dim(N).
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Also, Baird and Gudmundsson ([2]) proved a horizontally conformal
submersion ϕ : (Mn, g) → (Nm, h) is an m-harmonic map if and only if
all the fibers of ϕ are minimal submanifolds of M . Thus, we have the
following result.

Theorem 5.4. Let ϕ : (Mn, g) → (Nm, h) be a submersive m-
harmonic morphism from a compact Riemannian manifold M . If T is
parallel and the horizontal distribution H is integrable, then ϕ is energy-
stable.

Proof. It follows from [2] that all the fibers of ϕ are minimal subman-
ifolds of M . By Theorem 5.1, all fibers are volume-stable and so the
conclusion follows from [7].

Corollary 5.5. Let ϕ : (Mn, g) → (Nm, h) be a submersive m-
harmonic morphism with totally geodesic fibers from a compact Rie-
mannian manifold M . If the horizontal distribution H is integrable,
then ϕ is energy-stable.
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