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SOME RESULTS ON AN INTUITIONISTIC FUZZY

TOPOLOGICAL SPACE

Kyung-Ho Min, Won Keun Min∗ and Chun-Kee Park

Abstract. In this paper, we introduce the concepts of r-closure
and r-interior defined by intuitionistic gradation of openness. We
also introduce the concepts of r-gp-maps, weakly r-gp-maps, and
obtain some characterizations in terms of r-closure and r-interior
operators.

1. Introduction

In 1992 [8], Chattopadyay et. al. introduced the concept of fuzzy
topology redefined by a gradation of openness and investigated some
fundamental properties. In particular, Gayyar, Kerre, Ramadan [7] and
Demirci [5, 6] introduced the concepts of fuzzy closure and fuzzy interior
of a fuzzy set, and obtained some properties of them. Atanassov [1] in-
troduced the concept of intuitionistic fuzzy set which is a generalization
of fuzzy set in Zadeh’s sense [11]. Çoker introduced the concept of in-
tuitionistic fuzzy topological spaces [4], which it is an extended concept
of fuzzy topological spaces [2] in Chang’s sense. In 2002, Mondal and
Samanta introduced and investigated the concept of intuitionistic grada-
tion of openness [9] which is a generalization of the concept of gradation
of openness defined by Chattopadyay.

In this paper, we introduce the concepts of r-closure and r-interior
defined by intuitionistic gradation of openness. We also introduce the
concepts of weakly r-gp-maps, r-gp-maps, weakly r-gp-maps, and obtain
some characterizations.
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2. Preliminaries

Let X be a set and I = [0, 1] be the unit interval of the real line. IX

will denote the set of all fuzzy sets of X. 0X and 1X will denote the
characteristic functions of φ and X, respectively.

Definition 2.1 ([3, 8, 10]). Let X be a non-empty set and τ : IX → I
be a mapping satisfying the following conditions:

1. τ(0X) = τ(1X) = 1.
2. ∀A,B ∈ IX , τ(A ∩B) ≥ τ(A) ∧ τ(B).
3. For every subfamily {Ai : i ∈ J} ⊆ IX , τ(∪i∈J Ai) ≥ ∧i∈J τ(Ai).

Then the mapping τ : IX → I is called a fuzzy topology (or gradation of
openness [10]) on X. We call the ordered pair (X, τ) a fuzzy topological
space. The value τ(A) is called the degree of openness of A.

Definition 2.2 ([1]). An intuitionistic fuzzy set A in a set X is an
object having the form

A = {〈x, µA(x), γA(x)〉 : x ∈ X}

where the functions µA : X → I and γA : X → I denote the degree of
membership and the degree of nonmembership of each element x ∈ X
to the set A, respectively, and 0 ≤ µA(x) + γA(x) ≤ 1 for each x ∈ X.

Definition 2.3 ([9]). An intuitionistic gradation of openness (briefly
IGO) of fuzzy subsets of a set X is an ordered pair (τ, τ ∗) of functions
τ, τ ∗ : IX → I such that
(IGO1) τ(A) + τ ∗(A) ≤ 1, for all A ∈ IX ,
(IGO2) τ(0X) = τ(1X) = 1, τ ∗(0X) = τ ∗(1X) = 0,
(IGO3) ∀A,B ∈ IX , τ(A∩B) ≥ τ(A)∧ τ(B) and τ ∗(A∩B) ≤ τ ∗(A)∨
τ ∗(B),
(IGO4) for every subfamily {Ai : i ∈ J} ⊆ IX , τ(∪i∈J Ai) ≥ ∧i∈J τ(Ai)
and τ ∗(∪i∈J Ai) ≤ ∨i∈J τ ∗(Ai).

Then the triplet (X, τ, τ ∗) is called an intuitionistic fuzzy topological
space (briefly IFTS) on X. τ and τ ∗ may be interpreted as gradation
of openness and gradation of non-openness, respectively.

Definition 2.4 ([9]). Let X be a nonempty set and two functions
F ,F∗ : IX → I be satisfying
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(IGC1) F(A) + F∗(A) ≤ 1, for all A ∈ IX ,
(IGC2) F(0X) = F(1X) = 1,F∗(0X) = F∗(1X) = 0,
(IGC3) ∀A,B ∈ IX , F(A ∪ B) ≥ F(A) ∧ F(B) and F∗(A ∪ B) ≤
F∗(A) ∨ F∗(B),
(IGC4) for every subfamily {Ai : i ∈ J} ⊆ IX , F(∩i∈J Ai) ≥ ∧i∈J F(Ai)
and F∗(∩i∈J Ai) ≤ ∨i∈J F∗(Ai).

Then the ordered pair (F ,F∗) is called an intuitionistic gradation of
closedness [9] (briefly IGC) on X. F and F∗ may be interpreted as
gradation of closedness and gradation of nonclosedness, respectively.

Theorem 2.5 ([9]). Let X be a nonempty set. If (τ, τ ∗) is an IGO on
X, then the pair (F ,F∗), defined by Fτ (A) = τ(Ac), F∗

τ∗(A) = τ ∗(Ac)
where Ac denotes the complement of A, is an IGC on X. And if (F ,F∗)
is an IGC on X, then the pair (τF , τ ∗F∗), defined by τF(A) = F(Ac),
τ ∗F∗(A) = F∗(Ac) is an IGO on X.

Definition 2.6 ([9]). Let (X, τ, τ ∗) and (Y, σ, σ∗) be two IFTSs. A
mapping f : X → Y is a gp-map if τ(f−1(A)) ≥ σ(A) and τ ∗(f−1(A)) ≤
σ∗(A) for every A ∈ IY .

3. r-Closure and r-Interior Operators in IFTS

In this section, we introduce the concepts of r-closure and r-interior
of a fuzzy set on IFTS and investigate some their properties.

Definition 3.1. Let (X, τ, τ ∗) be an IFTS, A ∈ IX and r ∈ [0, 1).
Then the r-closure (resp., r-interior) of A, denoted by clrA (resp., irA),
is defined by clrA = ∩{K ∈ IX : Fτ (K) > 0 and F∗

τ∗(K) ≤ r, A ⊆ K}
(resp., irA = ∪{K ∈ IX : τ(K) > 0 and τ ∗(K) ≤ r,K ⊆ A}).

Theorem 3.2. Let (X, τ, τ ∗) be an IFTS and A,B ∈ IX , r ∈ [0, 1).
Then

1. irA ⊂ A ⊂ clrA.
2. If A ⊆ B, then clrA ⊆ clrB and irA ⊆ irB.
3. (irA)c = clrA

c.
4. (clrA)c = ir(A

c).

Proof. (1) and (2) follow directly from Definition 3.1.
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(3) From Theorem 2.5 and Definition 3.1, we have that

(clrA)c = (∩{K ∈ IX : Fτ (K) > 0 and F∗
τ∗(K) ≤ r, A ⊆ K})c

= ∪{Kc : K ∈ IX , τ(Kc) > 0 and τ ∗(Kc) ≤ r,Kc ⊆ Ac}
= ∪{U ∈ IX : τ(U) > 0 and τ ∗(U) ≤ r, U ⊆ Ac}
= ir(A

c).

The proof of (4) is similar to the proof of (3).

Theorem 3.3. Let (X, τ, τ ∗) be an IFTS and A ∈ IX , r ∈ [0, 1).
Then

1. τ(A) > 0 and τ ∗(A) ≤ r ⇒ irA = A.
2. Fτ (A) > 0 and F∗

τ∗(A) ≤ r ⇒ clrA = A.

Proof. (1) Let τ(A) > 0 and τ ∗(A) ≤ r. Then A ∈ {K ∈ IX : τ(K) >
0 and τ ∗(K) ≤ r,K ⊆ A}. By Definition 3.1 and Theorem 3.2, it follows
irA = A.

(3) Let Fτ (A) > 0 and F∗
τ∗(A) ≤ r. Then A ∈ {K ∈ IX : Fτ (K) >

0 and F∗
τ∗(K) ≤ r, A ⊆ K}. Thus by Definition 3.1 and Theorem 3.2,

we get clrA = A.

Example 3.4. Let X = I and let N denote the set of all natural
numbers. Consider a fuzzy set µn ∈ IX for each n ∈ N such that
µn(x) = n−1

n
x for x ∈ X.

Define an intuitionistic gradation of openness τ, τ ∗ : IX → I by

τ(0X) = τ(1X) = 1, τ ∗(0X) = τ ∗(1X) = 0,

τ(µn) =
1

n
, τ ∗(µn) =

n− 1

2n
,

τ(µ) = 0, τ ∗(µ) =
1

2
for all other fuzzy set µ ∈ IX .

Consider a fuzzy set A ∈ IX such that A(x) = x for all x ∈ X and
r = 2

3
. Then it follows irA = A but τ(A) = 0, τ ∗(A) = 1

2
.

Thus the converse of the part (1) in Theorem 3.3 is not true in general.

Theorem 3.5. Let (X, τ, τ ∗) be an IFTS and A,B ∈ IX , r ∈ [0, 1).
Then

1. clr(0X) = 0X .
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2. A ⊆ clrA.
3. clrA = clr(clrA).
4. clrA ∪ clrB ⊆ clr(A ∪B).

Proof. (1) and (2) follow from Definition 3.1 and Theorem 3.2.
(3) By Definition 3.1, for A ∈ IX we can write that

clrA = ∩{H ∈ IX : Fτ (H) > 0 and F∗
τ∗(H) ≤ r, A ⊆ H}.

But since Fτ (H) > 0 and F∗
τ∗(H) ≤ r, by Theorem 3.2 and Theorem

3.3 we get A ⊆ clrA ⊆ clrH = H. Thus

clrA = ∩ {H ∈ IX : Fτ (H) > 0 and F∗
τ∗(H) ≤ r, A ⊆ H}

⊇ ∩{K ∈ IX : Fτ (K) > 0 and F∗
τ∗(K) ≤ r, clrA ⊆ K}

= clr(clrA).

Consequently we have clr(clrA) = clrA from (2).
(4) It follows from (2).

Theorem 3.6. Let (X, τ, τ ∗) be an IFTS and A,B ∈ IX , r ∈ [0, 1).
Then

1. ir(1X) = 1X .
2. irA ⊆ A.
3. ir(irA) = irA.
4. ir(A ∩B) ⊆ irA ∩ irB.

Proof. The proof is similar to the proof of Theorem 3.5.

Definition 3.7. Let (X, τ, τ ∗) and (Y, σ, σ∗) be two IFTSs, and r ∈
[0, 1). A mapping f : X → Y is a r-gp-map iff σ(A) ≤ τ(f−1(A)) and
τ ∗(f−1(A)) ≤ σ∗(A), for each a fuzzy set A in Y such that σ(A) > 0
and σ∗(A) ≤ r.

Definition 3.8. Let (X, τ, τ ∗) and (Y, σ, σ∗) be two IFTSs, and r ∈
[0, 1). A mapping f : X → Y is a weakly r-gp-map iff τ(f−1(A)) > 0
and τ ∗(f−1(A)) ≤ r, for each fuzzy set A ∈ IY such that σ(A) > 0 and
σ∗(A) ≤ r.

It is obvious that every weakly r-gp-map is a r-gp-map from the above
definitions. But we can show that the converse is not always true from
the following example:
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Example 3.9. Let X = I and let N denote the set of all natural
numbers. For each n ∈ N , we consider µn ∈ IX such that µn(x) = 1

n
x

for x ∈ X.
Define τ, τ ∗ : IX → I by

τ(0X) = τ(1X) = 1, τ ∗(0X) = τ ∗(1X) = 0;

τ(µn) =
n

n + 2
, τ ∗(µn) =

2

n + 2
for each n ∈ N ;

τ(µ) = 0, τ ∗(µ) = 1 for all other fuzzy set µ ∈ IX .

And define σ, σ∗ : IX → I by

σ(0X) = σ(1X) = 1, σ∗(0X) = σ∗(1X) = 0;

σ(µn) =
1

n + 1
, σ∗(µn) =

1

n + 1
for each n in N ;

σ(µ) = 0, σ∗(µn) = 1 for all other fuzzy set µ ∈ IX .

Then the pairs (τ, τ ∗) and (σ, σ∗) are two intuitionistic gradations of
openness on X.

Consider the identity mapping f : (X, τ, τ ∗) → (Y, σ, σ∗) and r = 1
2
.

Then f is a weakly 1
2
-gp-map but not a 1

2
-gp-map. For if 2 ≤ n, then

σ(µn) ≤ τ(µn) but τ ∗(µn) 6≤ σ∗(µn).

Theorem 3.10. Let (X, τ, τ ∗) and (Y, σ, σ∗) be two IFTSs, and r ∈
[0, 1). A mapping f : X → Y is a r-gp-map iff Fσ(A) ≤ Fτ (f

−1(A))
and F∗

τ∗(f
−1(A)) ≤ F∗

σ∗(A), for each A ∈ IY such that Fσ(A) > 0 and
F∗

σ∗(A) ≤ r.

Proof. Suppose that f is a r-gp-map and let Fσ(A) > 0 and F∗
σ∗(A) ≤

r for A ∈ IY ; then Fσ((Ac)c) = σ(Ac) > 0. Since f is a r-gp-map, it
follows σ(Ac) ≤ τ(f−1(Ac)) and τ ∗(f−1(Ac)) ≤ σ∗(Ac). Thus from The-
orem 2.5, we get Fσ(A) ≤ Fτ (f

−1(A)) and F∗
τ∗(f

−1(A)) ≤ F∗
σ∗(A).

The converse is obvious.

Theorem 3.11. Let (X, τ, τ ∗) and (Y, σ, σ∗) be two IFTSs, r ∈ [0, 1).
A mapping f : X → Y is a weakly r-gp-map iff Fτ (f

−1(A)) > 0 and
F∗

τ∗(f
−1(A)) ≤ r, for each fuzzy set A in Y such that Fσ(A) > 0 and

F∗
σ∗(A) ≤ r.

Proof. It is similar to Theorem 3.10.
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Theorem 3.12. Let (X, τ, τ ∗) and (Y, σ, σ∗) be two IFTSs, r ∈ [0, 1).
If a mapping f : X → Y is a weakly r-gp-map, then we have

1. f(clrA) ⊆ clrf(A) for every A ∈ IX ,
2. clr(f

−1(A)) ⊆ f−1(clrA) for every A ∈ IY ,
3. f−1(irA) ⊆ ir(f

−1(A)) for every A ∈ IY .

Proof. (1) Let A ∈ IX ; then by Definition 3.1 and Theorem 3.11, we
have

f−1(clrf(A)) = f−1[∩{U ∈ IY : Fσ(U) > 0 and F∗
σ∗(U) ≤ r, f(A) ⊆ U}]

⊇ ∩{f−1(U) ∈ IX : Fτ (f
−1(U)) > 0 and F∗

τ∗(f
−1(U)) ≤ r, A ⊆ f−1(U)}

⊇ clrA.

Consequently, we get f(clrA) ⊆ clrf(A).
(2) It follows from (1).

(3) It obtains by (2) and Theorem 3.2.

Corollary 3.13. Let (X, τ, τ ∗) and (Y, σ, σ∗) be two IFTSs, r ∈
[0, 1). If a mapping f : X → Y is a r-gp-map, then we have

1. f(clrA) ⊆ clrf(A) for every A ∈ IX ,
2. clr(f

−1(A)) ⊆ f−1(clrA) for every A ∈ IY ,
3. f−1(irA) ⊆ ir(f

−1(A)) for every A ∈ IY .
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