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ε-FUZZY EQUIVALENCE RELATIONS

Inheung Chon

Abstract. We find the ε-fuzzy equivalence relation generated by
the union of two ε-fuzzy equivalence relations on a set, find the ε-
fuzzy equivalence relation generated by a fuzzy relation on a set,
and find sufficient conditions for the composition µ ◦ ν of two ε-
fuzzy equivalence relations µ and ν to be the ε-fuzzy equivalence
relation generated by µ ∪ ν. Also we study fuzzy partitions of ε-
fuzzy equivalence relations.

1. Introduction

The concept of a fuzzy relation was first proposed by Zadeh ([7]).
Subsequently, Goguen ([1]) and Sanchez ([5]) studied fuzzy relations in
various contexts. In [4] Nemitz discussed fuzzy equivalence relations,
fuzzy functions as fuzzy relations, and fuzzy partitions. Murali ([3])
developed some properties of fuzzy equivalence relations and certain
lattice theoretic properties of fuzzy equivalence relations. The standard
definition of a reflexive fuzzy relation µ on a set X, which Murali ([3])
and Nemitz ([4]) used in their papers, is µ(x, x) = 1 for all x ∈ X. Yeh
([6]) weakened the standard reflexive fuzzy relation to µ(x, x) ≥ ε > 0,
which is called an ε-reflexive fuzzy relation. Also Gupta et al. ([2])
proposed a generalized definition of a fuzzy equivalence relation on a
set, which is called a G-reflexive fuzzy relation, and developed some
properties of that relation.

We characterize the generated ε-fuzzy equivalence relations on sets
and fuzzy partitions of ε-fuzzy equivalence relations. In section 2 we
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review some basic definitions and properties of fuzzy relations and ε-
reflexive fuzzy relations. In section 3 we find the ε-fuzzy equivalence
relation generated by the union of two ε-fuzzy equivalence relations on
a set, find the ε-fuzzy equivalence relation generated by a fuzzy relation
on a set, and show that if µ and ν are ε-fuzzy equivalence relations on
a set S such that µ ◦ ν = ν ◦ µ, µ(x, x) ≥ ν(x, y), and ν(y, y) ≥ µ(x, y)
for all x, y ∈ S, then µ ◦ ν is the ε-fuzzy equivalence relation generated
by µ ∪ ν. In section 4 we define a fuzzy partition based on ε-fuzzy
equivalence relations and construct a fuzzy partition.

2. Preliminaries

In this section we recall some basic definitions and properties of
fuzzy relations and ε-reflexive fuzzy relations.

Definition 2.1. A function B from a set X to the closed unit
interval [0, 1] in R is called a fuzzy set in X. For every x ∈ B, B(x) is
called a membership grade of x in B.

The standard definition of a reflexive fuzzy relation µ in a set X
demands µ(x, x) = 1. Yeh ([6]) weakened this definition as follows.

Definition 2.2. A fuzzy relation µ in a set X is a fuzzy subset
of X ×X. µ is ε-reflexive in X if µ(x, x) ≥ ε > 0 for all x ∈ X. µ is
symmetric in X if µ(x, y) = µ(y, x) for all x, y in X. The composition
λ ◦ µ of two fuzzy relations λ, µ in X is the fuzzy subset of X × X
defined by

(λ ◦ µ)(x, y) = sup
z∈X

min(λ(x, z), µ(z, y)).

A fuzzy relation µ in X is transitive in X if µ◦µ ⊆ µ. A fuzzy relation µ
in X is called ε-fuzzy equivalence relation if µ is ε-reflexive, symmetric,
and transitive.

Let FX be the set of all fuzzy relations in a set X. Then it is easy
to see that the composition ◦ is associative and FX is a monoid under
the operation of composition ◦.

Definition 2.3. Let µ be a fuzzy relation in a set X. µ−1 is
defined as a fuzzy relation in X by µ−1(x, y) = µ(y, x).
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It is easy to see that (µ ◦ ν)−1 = ν−1 ◦ µ−1 for fuzzy relations µ
and ν.

Proposition 2.4. Let µ be a fuzzy relation on a set X. Then
∪∞n=1 µn is the smallest transitive fuzzy relation on X containing µ,
where µn = µ ◦ µ ◦ · · · ◦ µ.

Proof. See Proposition 2.3 of [5]. ¤

Proposition 2.5. Let µ be a fuzzy relation on a set X. If µ is
symmetric, then so is ∪∞n=1 µn, where µn = µ ◦ µ ◦ · · · ◦ µ.

Proof. See Proposition 2.4 of [5]. ¤

Proposition 2.6. Let µ be a fuzzy relation on a set S. If µ is
ε-reflexive, then so is ∪∞n=1 µn, where µn = µ ◦ µ ◦ · · · ◦ µ.

Proof. Clearly µ is ε-reflexive. Suppose µk is ε-reflexive. Then

µk+1(x, x) = (µk ◦ µ)(x, x) = sup
z∈X

min[µk(x, z), µ(z, x)]

≥ min[µk(x, x), µ(x, x)] ≥ ε > 0.

By the mathematical induction, µn is ε-reflexive for all natural numbers
n. Thus [∪∞n=1µ

n](x, x) = sup [µ(x, x), (µ ◦ µ)(x, x), . . . ] ≥ ε > 0.
Hence ∪∞n=1µ

n is ε-reflexive. ¤

Proposition 2.7. Let µ and each νi be fuzzy relations in a set X
for all i ∈ I. Then µ ◦ ( ∩

i∈I
νi) ⊆ ∩

i∈I
(µ ◦ νi) and ( ∩

i∈I
νi) ◦µ ⊆ ∩

i∈I
(νi ◦µ).

Proof. Straightforward. ¤

3. ε-Fuzzy equivalence relations generated by fuzzy rela-
tions

In this section we characterize the generated ε-fuzzy equivalence
relations on sets.

Proposition 3.1. Let µ and ν be ε-fuzzy equivalence relations
in a set X. Then µ ∩ ν is an ε-fuzzy equivalence relation.
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Proof. It is clear that µ ∩ ν is ε-reflexive and symmetric. By
Proposition 2.7, [(µ ∩ ν) ◦ (µ ∩ ν)] ⊆ [µ ◦ (µ ∩ ν)] ∩ [ν ◦ (µ ∩ ν)] ⊆
[(µ◦µ)∩(µ◦ν)]∩[(ν◦µ)∩(ν◦ν)] ⊆ [µ∩(µ◦ν)]∩[(ν◦µ)∩ν] ⊆ µ∩ν. That
is, µ ∩ ν is transitive. Thus µ ∩ ν is an ε-fuzzy equivalence relation. ¤

It is easy to see that even though µ and ν are ε-fuzzy equivalence
relations, µ ∪ ν is not necessarily an ε-fuzzy equivalence relation. We
find the ε-fuzzy equivalence relation generated by µ∪ ν on a set in the
following proposition.

Proposition 3.2. Let µ and ν be ε-fuzzy equivalence relations
on a set S. Then the ε-fuzzy equivalence relation generated by µ ∪ ν
in S is ∪∞n=1(µ ∪ ν)n = (µ ∪ ν) ∪ [(µ ∪ ν) ◦ (µ ∪ ν)] ∪ . . . .

Proof. Clearly (µ∪ν)(x, x) ≥ ε > 0. That is, µ∪ν is ε-reflexive. By
Proposition 2.6, ∪∞n=1(µ∪ν)n is ε-reflexive. Clearly µ∪ν is symmetric.
By Proposition 2.5, ∪∞n=1(µ ∪ ν)n is symmetric. By Proposition 2.4,
∪∞n=1(µ∪ν)n is transitive. Hence ∪∞n=1(µ∪ν)n is an ε-fuzzy equivalence
relation containing µ∪ν. Let λ be an ε-fuzzy equivalence relation in S
containing µ∪ ν. Then ∪∞n=1(µ∪ ν)n ⊆ ∪∞n=1λ

n = λ∪ (λ ◦ λ)∪ (λ ◦ λ ◦
λ)∪· · · ⊆ λ∪λ∪· · · = λ. Thus ∪∞n=1(µ∪ν)n is the ε-fuzzy equivalence
relation generated by µ ∪ ν. ¤

Theorem 3.3. Let µ and ν be ε-fuzzy equivalence relations on a
set S such that µ(x, x) ≥ ν(x, y) and ν(y, y) ≥ µ(x, y) for all x, y ∈ S.
If µ ◦ ν = ν ◦ µ, then µ ◦ ν is the ε-fuzzy equivalence relation on S
generated by µ ∪ ν.

Proof.
(µ◦ν)(x, x) = sup

z∈S
min [µ(x, z), ν(z, x)] ≥ min (µ(x, x), ν(x, x)) ≥ ε > 0

for all x ∈ S. That is, µ ◦ ν is ε-reflexive. Since µ and ν are sym-
metric, (µ ◦ ν)−1 = ν−1 ◦ µ−1 = ν ◦ µ = µ ◦ ν. Thus µ ◦ ν is
symmetric. Since µ and ν are transitive and the operation ◦ is as-
sociative, (µ ◦ ν) ◦ (µ ◦ ν) = µ ◦ (ν ◦ µ) ◦ ν = µ ◦ (µ ◦ ν) ◦ ν =
(µ ◦ µ) ◦ (ν ◦ ν) ⊆ µ ◦ ν. Hence µ ◦ ν is an ε-fuzzy equivalence rela-
tion. Since ν(y, y) ≥ µ(x, y), (µ ◦ ν)(x, y) = sup

z∈S
min[µ(x, z), ν(z, y)] ≥

min(µ(x, y), ν(y, y)) = µ(x, y). Since µ(x, x) ≥ ν(x, y), (µ ◦ ν)(x, y) =
sup
z∈S

min [µ(x, z), ν(z, y)] ≥ min (µ(x, x), ν(x, y)) = ν(x, y). Thus
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(µ ◦ ν)(x, y) ≥ max (µ(x, y), ν(x, y)) = (µ ∪ ν)(x, y) for all x, y ∈ S.
Thus µ ∪ ν ⊆ µ ◦ ν. Let λ be an ε-fuzzy equivalence relation in S con-
taining µ∪ν. Since λ is transitive, µ◦ν ⊆ (µ∪ν)◦ (µ∪ν) ⊆ λ◦λ ⊆ λ.
Thus µ ◦ ν is the ε-fuzzy equivalence relation generated by µ ∪ ν. ¤

Theorem 3.4. Let µ be a fuzzy relation on a set S. Then the
ε-fuzzy equivalence relation generated by µ in S is ∪∞n=1(µ ∪ µ−1 ∪ θ)n

,
where θ is a fuzzy relation in S such that θ(a, a) = ε for all a ∈ S and
θ(x, y) = θ(y, x) ≤ min [µ(x, y), µ(y, x)] for all x, y ∈ S with x 6= y.

Proof. (µ ∪ µ−1 ∪ θ)(a, a) ≥ θ(a, a) = ε > 0 for all a ∈ S.
Thus µ ∪ µ−1 ∪ θ is ε-reflexive. Let µ1 = µ ∪ µ−1 ∪ θ. By Propo-
sition 2.6, ∪∞n=1µ

n
1 is ε-reflexive. µ1(x, y) = (µ ∪ µ−1 ∪ θ)(x, y) =

max[µ(x, y), µ−1(x, y), θ(x, y)] = max[µ−1(y, x), µ(y, x), θ(y, x)]
= (µ∪µ−1∪θ)(y, x) = µ1(y, x). Thus µ1 is symmetric. By Proposition
2.5, ∪∞n=1µ

n
1 is symmetric. By Proposition 2.4, ∪∞n=1µ

n
1 is transitive.

Hence ∪∞n=1µ
n
1 is an ε-fuzzy equivalence relation containing µ. Let ν be

an ε-fuzzy equivalence relation containing µ. Then µ(x, y) ≤ ν(x, y),
µ−1(x, y) = µ(y, x) ≤ ν(y, x) = ν(x, y), and θ(x, y) ≤ µ(x, y) ≤ ν(x, y)
for all x, y ∈ S such that x 6= y. That is, ν(x, y) ≥ (µ ∪ µ−1 ∪ θ)(x, y)
for all x, y ∈ S such that x 6= y. ν(a, a) ≥ µ(a, a) = µ−1(a, a)
for all a ∈ S. Since θ(a, a) = ε and ν(a, a) ≥ ε for all a ∈ S,
θ(a, a) ≤ ν(a, a). That is, µ1(a, a) ≤ ν(a, a) for all a ∈ S. Thus µ1 =
(µ∪µ−1∪θ) ⊆ ν. Suppose µk

1 ⊆ ν. Then µk+1
1 (x, y) = (µk

1 ◦µ1)(x, y) =
sup
z∈S

min[µk
1(x, z), µ1(z, y)] ≤ sup

z∈S
min[ν(x, z), ν(z, y)] = (ν ◦ ν)(x, y).

Since ν is transitive, µk+1
1 ⊆ ν ◦ ν ⊆ ν. By the mathematical induc-

tion, µn
1 ⊆ ν for n = 1, 2 . . . . Hence ∪∞n=1 µn

1 = µ1 ∪ (µ1 ◦ µ1) ∪ (µ1 ◦
µ1 ◦ µ1) · · · ⊆ ν. ¤

4. Partitions of ε-fuzzy equivalence relations

Murali([3]) studied partition of fuzzy equivalence relations. In
this section we define a fuzzy partition based on ε-fuzzy equivalence
relations and construct a fuzzy partition, which may be considered as
a generalization of Murali’s work.

Definition 4.1. Let µ be an ε-fuzzy equivalence relation on a
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set X. For 0 < p ≤ ε, a relation ≺p on X is defined by x ≺p y iff
µ(x, y) ≥ p.

Proposition 4.2. Let µ be an ε-fuzzy equivalence relation on a
set X. Then the relation ≺p on a set X defined in Definition 4.1 is an
equivalence relation.

Proof. Since µ(x, x) ≥ ε ≥ p, ≺p is reflexive. Suppose x ≺p y.
Then µ(x, y) ≥ p, and hence µ(y, x) ≥ p. Thus ≺p is symmetric. Sup-
pose x ≺p y and y ≺p z. Then µ(x, y) ≥ p and µ(y, z) ≥ p. µ(x, z) =
(µ ◦ µ)(x, z) = sup

k∈X
min(µ(x, k), µ(k, z)) ≥

min(µ(x, y), µ(y, z)) ≥ p. Thus ≺p is transitive. ¤

Definition 4.3. Let µ be an ε-fuzzy equivalence relation on a set
X and let ≺p be an equivalence relation on X defined in Proposition
4.2. The equivalence class containing x is denoted by [x]p. That is,
[x]p = {y ∈ X : y ≺p x} for p ≤ ε.

Definition 4.4. Let µ be an ε-fuzzy equivalence relation on a set
X and let ≺p be an equivalence relation on X defined in Proposition
4.2. A fuzzy subset µ[x]ε on a set X is defined by µ[x]ε(y) = µ(x, y).

Definition 4.5. Let {νi : ∈ I} be a collection of fuzzy sets on a
set X. If (∪i∈Iνi)(z) ≥ p and νi ∩ νj = 0 for all i, j ∈ I with i 6= j,
we call {νi : i ∈ I} is a fuzzy partition of a fuzzy set χp

X on X, where
χp

X : X → R is a function defined by χp
X(x) ≥ p for all x ∈ X.

Lemma 4.6. Let µ be an ε-fuzzy equivalence relation on a set X.
Then [x]p ∩ [y]p = ∅ for some 0 < p ≤ ε iff (µ[x]ε ∩ µ[y]ε)(z) = 0 for all
z ∈ X.

Proof. (→) Suppose (µ[x]ε ∩ µ[y]ε)(z) > 0 for some z ∈ X. Then
µ[x]ε(z) ≥ p and µ[y]ε(z) ≥ p for some p ≤ ε. That is, µ(x, z) ≥ p and
µ(y, z) ≥ p. Thus µ(x, y) ≥ (µ◦µ)(x, y) = sup

k∈X
min(µ(x, k), µ(k, y)) ≥

min(µ(x, z), µ(y, z)) ≥ p. That is, x ≺p y. This contradicts [x]p∩[y]p =
∅.
(→) Suppose α ∈ [x]p ∩ [y]p. Then x ≺p α and y ≺p α. Since ≺p is
an equivalence relation by Proposition 4.2, x ≺p y. Thus µ(x, y) ≥ p.
Since µ(y, y) ≥ ε and p ≤ ε, (µ[x]ε ∩ µ[y]ε)(y) = min(µ(x, y), µ(y, y)) ≥
p. This contradicts that (µ[x]ε ∩ µ[y]ε)(z) = 0 for all z ∈ X. ¤
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Theorem 4.7. Let µ be an ε-fuzzy equivalence relation on a set
X. Let {[xi]p : xi ∈ X, i ∈ I} be a partition of X. Then {µ[xi]ε : xi ∈
X, i ∈ I} is a fuzzy partition of a fuzzy set χp

X on X.

Proof. Let i, j ∈ I with i 6= j. Then [xi]p ∩ [xj ]p = ∅. By Lemma
4.6, (µ[xi]ε ∩ µ[xj ]ε)(z) = 0 for all z ∈ X. Let y ∈ X. Then y ∈ [xk]p
for some k ∈ I. Since y ≺p xk, µ(y, xk) ≥ p. Thus

(∪i∈I µ[xi]ε)(y) = supi∈I µ[xi]ε(y) = supi∈I µ(xi,y ) = µ(xk, y) ≥ p.

¤
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