Kangweon-Kyungki Math. Jour. 14 (2006), No. 1, pp. 71-77

$\epsilon\text{-}{\rm FUZZY}$ EQUIVALENCE RELATIONS

INHEUNG CHON

ABSTRACT. We find the ϵ -fuzzy equivalence relation generated by the union of two ϵ -fuzzy equivalence relations on a set, find the ϵ fuzzy equivalence relation generated by a fuzzy relation on a set, and find sufficient conditions for the composition $\mu \circ \nu$ of two ϵ fuzzy equivalence relations μ and ν to be the ϵ -fuzzy equivalence relation generated by $\mu \cup \nu$. Also we study fuzzy partitions of ϵ fuzzy equivalence relations.

1. Introduction

The concept of a fuzzy relation was first proposed by Zadeh ([7]). Subsequently, Goguen ([1]) and Sanchez ([5]) studied fuzzy relations in various contexts. In [4] Nemitz discussed fuzzy equivalence relations, fuzzy functions as fuzzy relations, and fuzzy partitions. Murali ([3]) developed some properties of fuzzy equivalence relations and certain lattice theoretic properties of fuzzy equivalence relations. The standard definition of a reflexive fuzzy relation μ on a set X, which Murali ([3]) and Nemitz ([4]) used in their papers, is $\mu(x, x) = 1$ for all $x \in X$. Yeh ([6]) weakened the standard reflexive fuzzy relation to $\mu(x, x) \ge \epsilon > 0$, which is called an ϵ -reflexive fuzzy relation. Also Gupta et al. ([2]) proposed a generalized definition of a fuzzy equivalence relation on a set, which is called a G-reflexive fuzzy relation, and developed some properties of that relation.

We characterize the generated ϵ -fuzzy equivalence relations on sets and fuzzy partitions of ϵ -fuzzy equivalence relations. In section 2 we

Received March 14, 2006.

²⁰⁰⁰ Mathematics Subject Classification: 03E72.

Key words and phrases: $\epsilon\text{-reflexive fuzzy relation},\,\epsilon\text{-fuzzy equivalence relation}$.

This paper was supported by the Joint Research Fund of Seoul Women's University and Korean Army Academy, 2005

Inheung Chon

review some basic definitions and properties of fuzzy relations and ϵ -reflexive fuzzy relations. In section 3 we find the ϵ -fuzzy equivalence relation generated by the union of two ϵ -fuzzy equivalence relations on a set, find the ϵ -fuzzy equivalence relation generated by a fuzzy relation on a set, and show that if μ and ν are ϵ -fuzzy equivalence relations on a set S such that $\mu \circ \nu = \nu \circ \mu$, $\mu(x, x) \geq \nu(x, y)$, and $\nu(y, y) \geq \mu(x, y)$ for all $x, y \in S$, then $\mu \circ \nu$ is the ϵ -fuzzy equivalence relation generated by $\mu \cup \nu$. In section 4 we define a fuzzy partition based on ϵ -fuzzy equivalence relations and construct a fuzzy partition.

2. Preliminaries

In this section we recall some basic definitions and properties of fuzzy relations and ϵ -reflexive fuzzy relations.

DEFINITION 2.1. A function B from a set X to the closed unit interval [0, 1] in \mathbb{R} is called a *fuzzy set* in X. For every $x \in B$, B(x) is called a *membership grade* of x in B.

The standard definition of a reflexive fuzzy relation μ in a set X demands $\mu(x, x) = 1$. Yeh ([6]) weakened this definition as follows.

DEFINITION 2.2. A fuzzy relation μ in a set X is a fuzzy subset of $X \times X$. μ is ϵ -reflexive in X if $\mu(x, x) \ge \epsilon > 0$ for all $x \in X$. μ is symmetric in X if $\mu(x, y) = \mu(y, x)$ for all x, y in X. The composition $\lambda \circ \mu$ of two fuzzy relations λ, μ in X is the fuzzy subset of $X \times X$ defined by

$$(\lambda \circ \mu)(x, y) = \sup_{z \in X} \min(\lambda(x, z), \mu(z, y)).$$

A fuzzy relation μ in X is *transitive* in X if $\mu \circ \mu \subseteq \mu$. A fuzzy relation μ in X is called ϵ -fuzzy equivalence relation if μ is ϵ -reflexive, symmetric, and transitive.

Let \mathcal{F}_X be the set of all fuzzy relations in a set X. Then it is easy to see that the composition \circ is associative and \mathcal{F}_X is a monoid under the operation of composition \circ .

DEFINITION 2.3. Let μ be a fuzzy relation in a set X. μ^{-1} is defined as a fuzzy relation in X by $\mu^{-1}(x, y) = \mu(y, x)$.

It is easy to see that $(\mu \circ \nu)^{-1} = \nu^{-1} \circ \mu^{-1}$ for fuzzy relations μ and ν .

PROPOSITION 2.4. Let μ be a fuzzy relation on a set X. Then $\bigcup_{n=1}^{\infty} \mu^n$ is the smallest transitive fuzzy relation on X containing μ , where $\mu^n = \mu \circ \mu \circ \cdots \circ \mu$.

Proof. See Proposition 2.3 of [5].

PROPOSITION 2.5. Let μ be a fuzzy relation on a set X. If μ is symmetric, then so is $\bigcup_{n=1}^{\infty} \mu^n$, where $\mu^n = \mu \circ \mu \circ \cdots \circ \mu$.

Proof. See Proposition 2.4 of [5]. \Box

PROPOSITION 2.6. Let μ be a fuzzy relation on a set S. If μ is ϵ -reflexive, then so is $\bigcup_{n=1}^{\infty} \mu^n$, where $\mu^n = \mu \circ \mu \circ \cdots \circ \mu$.

Proof. Clearly μ is ϵ -reflexive. Suppose μ^k is ϵ -reflexive. Then

$$\mu^{k+1}(x,x) = (\mu^k \circ \mu)(x,x) = \sup_{z \in X} \min[\mu^k(x,z), \ \mu(z,x)]$$

$$\geq \min[\mu^k(x,x), \ \mu(x,x)] \ge \epsilon > 0.$$

By the mathematical induction, μ^n is ϵ -reflexive for all natural numbers n. Thus $[\bigcup_{n=1}^{\infty} \mu^n](x,x) = \sup [\mu(x,x), (\mu \circ \mu)(x,x), \ldots] \ge \epsilon > 0$. Hence $\bigcup_{n=1}^{\infty} \mu^n$ is ϵ -reflexive.

PROPOSITION 2.7. Let μ and each ν_i be fuzzy relations in a set X for all $i \in I$. Then $\mu \circ (\bigcap_{i \in I} \nu_i) \subseteq \bigcap_{i \in I} (\mu \circ \nu_i)$ and $(\bigcap_{i \in I} \nu_i) \circ \mu \subseteq \bigcap_{i \in I} (\nu_i \circ \mu)$.

Proof. Straightforward.

3. ϵ -Fuzzy equivalence relations generated by fuzzy relations

In this section we characterize the generated ϵ -fuzzy equivalence relations on sets.

PROPOSITION 3.1. Let μ and ν be ϵ -fuzzy equivalence relations in a set X. Then $\mu \cap \nu$ is an ϵ -fuzzy equivalence relation.

Inheung Chon

Proof. It is clear that $\mu \cap \nu$ is ϵ -reflexive and symmetric. By Proposition 2.7, $[(\mu \cap \nu) \circ (\mu \cap \nu)] \subseteq [\mu \circ (\mu \cap \nu)] \cap [\nu \circ (\mu \cap \nu)] \subseteq [(\mu \circ \mu) \cap (\mu \circ \nu)] \cap [(\nu \circ \mu) \cap (\nu \circ \nu)] \subseteq [\mu \cap (\mu \circ \nu)] \cap [(\nu \circ \mu) \cap \nu] \subseteq \mu \cap \nu$. That is, $\mu \cap \nu$ is transitive. Thus $\mu \cap \nu$ is an ϵ -fuzzy equivalence relation. \Box

It is easy to see that even though μ and ν are ϵ -fuzzy equivalence relations, $\mu \cup \nu$ is not necessarily an ϵ -fuzzy equivalence relation. We find the ϵ -fuzzy equivalence relation generated by $\mu \cup \nu$ on a set in the following proposition.

PROPOSITION 3.2. Let μ and ν be ϵ -fuzzy equivalence relations on a set S. Then the ϵ -fuzzy equivalence relation generated by $\mu \cup \nu$ in S is $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n = (\mu \cup \nu) \cup [(\mu \cup \nu) \circ (\mu \cup \nu)] \cup \ldots$

Proof. Clearly $(\mu \cup \nu)(x, x) \geq \epsilon > 0$. That is, $\mu \cup \nu$ is ϵ -reflexive. By Proposition 2.6, $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n$ is ϵ -reflexive. Clearly $\mu \cup \nu$ is symmetric. By Proposition 2.5, $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n$ is symmetric. By Proposition 2.4, $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n$ is transitive. Hence $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n$ is an ϵ -fuzzy equivalence relation containing $\mu \cup \nu$. Let λ be an ϵ -fuzzy equivalence relation in Scontaining $\mu \cup \nu$. Then $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n \subseteq \bigcup_{n=1}^{\infty} \lambda^n = \lambda \cup (\lambda \circ \lambda) \cup (\lambda \circ \lambda \circ \lambda) \cup \cdots \subseteq \lambda \cup \lambda \cup \cdots = \lambda$. Thus $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n$ is the ϵ -fuzzy equivalence relation generated by $\mu \cup \nu$.

THEOREM 3.3. Let μ and ν be ϵ -fuzzy equivalence relations on a set S such that $\mu(x, x) \geq \nu(x, y)$ and $\nu(y, y) \geq \mu(x, y)$ for all $x, y \in S$. If $\mu \circ \nu = \nu \circ \mu$, then $\mu \circ \nu$ is the ϵ -fuzzy equivalence relation on S generated by $\mu \cup \nu$.

Proof.

 $\begin{array}{l} (\mu \circ \nu)(x,x) = \sup_{z \in S} \min \left[\mu(x,z), \nu(z,x) \right] \geq \min \left(\mu(x,x), \nu(x,x) \right) \geq \epsilon > 0 \\ \text{for all } x \in S. \text{ That is, } \mu \circ \nu \text{ is } \epsilon \text{-reflexive. Since } \mu \text{ and } \nu \text{ are symmetric, } (\mu \circ \nu)^{-1} = \nu^{-1} \circ \mu^{-1} = \nu \circ \mu = \mu \circ \nu. \text{ Thus } \mu \circ \nu \text{ is symmetric. Since } \mu \text{ and } \nu \text{ are transitive and the operation } \circ \text{ is associative, } (\mu \circ \nu) \circ (\mu \circ \nu) = \mu \circ (\nu \circ \mu) \circ \nu = \mu \circ (\mu \circ \nu) \circ \nu = \\ (\mu \circ \mu) \circ (\nu \circ \nu) \subseteq \mu \circ \nu. \text{ Hence } \mu \circ \nu \text{ is an } \epsilon \text{-fuzzy equivalence relation. Since } \nu(y,y) \geq \mu(x,y), \ (\mu \circ \nu)(x,y) = \sup_{z \in S} \min[\mu(x,z),\nu(z,y)] \geq \\ \min(\mu(x,y),\nu(y,y)) = \mu(x,y). \text{ Since } \mu(x,x) \geq \nu(x,y), \ (\mu \circ \nu)(x,y) = \\ \sup_{z \in S} \min \left[\mu(x,z),\nu(z,y) \right] \geq \min \left(\mu(x,x),\nu(x,y) \right) = \nu(x,y). \text{ Thus } \\ \mu(x,y),\nu(x,y) = \nu(x,y). \end{array}$

74

 $(\mu \circ \nu)(x,y) \ge \max (\mu(x,y),\nu(x,y)) = (\mu \cup \nu)(x,y)$ for all $x, y \in S$. Thus $\mu \cup \nu \subseteq \mu \circ \nu$. Let λ be an ϵ -fuzzy equivalence relation in S containing $\mu \cup \nu$. Since λ is transitive, $\mu \circ \nu \subseteq (\mu \cup \nu) \circ (\mu \cup \nu) \subseteq \lambda \circ \lambda \subseteq \lambda$. Thus $\mu \circ \nu$ is the ϵ -fuzzy equivalence relation generated by $\mu \cup \nu$. \Box

THEOREM 3.4. Let μ be a fuzzy relation on a set S. Then the ϵ -fuzzy equivalence relation generated by μ in S is $\bigcup_{n=1}^{\infty} (\mu \cup \mu^{-1} \cup \theta)^n$, where θ is a fuzzy relation in S such that $\theta(a, a) = \epsilon$ for all $a \in S$ and $\theta(x, y) = \theta(y, x) \leq \min [\mu(x, y), \mu(y, x)]$ for all $x, y \in S$ with $x \neq y$.

Proof. $(\mu \cup \mu^{-1} \cup \theta)(a, a) \ge \theta(a, a) = \epsilon > 0$ for all $a \in S$. Thus $\mu \cup \mu^{-1} \cup \theta$ is ϵ -reflexive. Let $\mu_1 = \mu \cup \mu^{-1} \cup \theta$. By Proposition 2.6, $\bigcup_{n=1}^{\infty} \mu_1^n$ is ϵ -reflexive. $\mu_1(x,y) = (\mu \cup \mu^{-1} \cup \theta)(x,y) = (\mu \cup \mu^{-1} \cup \theta)(x,y)$ $\max[\mu(x,y), \mu^{-1}(x,y), \theta(x,y)]$ $= \max[\mu^{-1}(y, x), \mu(y, x), \theta(y, x)]$ $= (\mu \cup \mu^{-1} \cup \theta)(y, x) = \mu_1(y, x)$. Thus μ_1 is symmetric. By Proposition 2.5, $\bigcup_{n=1}^{\infty} \mu_1^n$ is symmetric. By Proposition 2.4, $\bigcup_{n=1}^{\infty} \mu_1^n$ is transitive. Hence $\bigcup_{n=1}^{\infty} \mu_1^n$ is an ϵ -fuzzy equivalence relation containing μ . Let ν be an ϵ -fuzzy equivalence relation containing μ . Then $\mu(x,y) \leq \nu(x,y)$, $\mu^{-1}(x,y) = \mu(y,x) \le \nu(y,x) = \nu(x,y)$, and $\theta(x,y) \le \mu(x,y) \le \nu(x,y)$ for all $x, y \in S$ such that $x \ne y$. That is, $\nu(x,y) \ge (\mu \cup \mu^{-1} \cup \theta)(x,y)$ for all $x, y \in S$ such that $x \neq y$. $\nu(a, a) \geq \mu(a, a) = \mu^{-1}(a, a)$ for all $a \in S$. Since $\theta(a, a) = \epsilon$ and $\nu(a, a) \ge \epsilon$ for all $a \in S$, $\theta(a,a) \leq \nu(a,a)$. That is, $\mu_1(a,a) \leq \nu(a,a)$ for all $a \in S$. Thus $\mu_1 =$ $(\mu \cup \mu^{-1} \cup \theta) \subseteq \nu. \text{ Suppose } \mu_1^k \subseteq \nu. \text{ Then } \mu_1^{k+1}(x, y) = (\mu_1^k \circ \mu_1)(x, y) = \sup_{z \in S} \min[\mu_1^k(x, z), \mu_1(z, y)] \le \sup_{z \in S} \min[\nu(x, z), \nu(z, y)] = (\nu \circ \nu)(x, y).$ $z \in S$ Since ν is transitive, $\mu_1^{k+1} \subseteq \nu \circ \nu \subseteq \nu$. By the mathematical induction, $\mu_1^n \subseteq \nu$ for n = 1, 2... Hence $\bigcup_{n=1}^{\infty} \mu_1^n = \mu_1 \cup (\mu_1 \circ \mu_1) \cup (\mu_1 \circ \mu_1)$ $\mu_1 \circ \mu_1$) · · · $\subseteq \nu$.

4. Partitions of ϵ -fuzzy equivalence relations

Murali([3]) studied partition of fuzzy equivalence relations. In this section we define a fuzzy partition based on ϵ -fuzzy equivalence relations and construct a fuzzy partition, which may be considered as a generalization of Murali's work.

DEFINITION 4.1. Let μ be an ϵ -fuzzy equivalence relation on a

Inheung Chon

set X. For $0 , a relation <math>\prec_p$ on X is defined by $x \prec_p y$ iff $\mu(x, y) \geq p$.

PROPOSITION 4.2. Let μ be an ϵ -fuzzy equivalence relation on a set X. Then the relation \prec_p on a set X defined in Definition 4.1 is an equivalence relation.

Proof. Since $\mu(x, x) \ge \epsilon \ge p$, \prec_p is reflexive. Suppose $x \prec_p y$. Then $\mu(x, y) \ge p$, and hence $\mu(y, x) \ge p$. Thus \prec_p is symmetric. Suppose $x \prec_p y$ and $y \prec_p z$. Then $\mu(x, y) \ge p$ and $\mu(y, z) \ge p$. $\mu(x, z) = (\mu \circ \mu)(x, z) = \sup_{\substack{k \in X \\ k \in X}} \min(\mu(x, y), \mu(y, z)) \ge p$. Thus \prec_p is transitive. \Box

DEFINITION 4.3. Let μ be an ϵ -fuzzy equivalence relation on a set X and let \prec_p be an equivalence relation on X defined in Proposition 4.2. The equivalence class containing x is denoted by $[x]_p$. That is, $[x]_p = \{y \in X : y \prec_p x\}$ for $p \leq \epsilon$.

DEFINITION 4.4. Let μ be an ϵ -fuzzy equivalence relation on a set X and let \prec_p be an equivalence relation on X defined in Proposition 4.2. A fuzzy subset $\mu_{[x]_{\epsilon}}$ on a set X is defined by $\mu_{[x]_{\epsilon}}(y) = \mu(x, y)$.

DEFINITION 4.5. Let $\{\nu_i : \in I\}$ be a collection of fuzzy sets on a set X. If $(\bigcup_{i \in I} \nu_i)(z) \ge p$ and $\nu_i \cap \nu_j = 0$ for all $i, j \in I$ with $i \ne j$, we call $\{\nu_i : i \in I\}$ is a *fuzzy partition* of a fuzzy set χ^p_X on X, where $\chi^p_X : X \to \mathbb{R}$ is a function defined by $\chi^p_X(x) \ge p$ for all $x \in X$.

LEMMA 4.6. Let μ be an ϵ -fuzzy equivalence relation on a set X. Then $[x]_p \cap [y]_p = \emptyset$ for some $0 iff <math>(\mu_{[x]_{\epsilon}} \cap \mu_{[y]_{\epsilon}})(z) = 0$ for all $z \in X$.

Proof. (\rightarrow) Suppose $(\mu_{[x]_{\epsilon}} \cap \mu_{[y]_{\epsilon}})(z) > 0$ for some $z \in X$. Then $\mu_{[x]_{\epsilon}}(z) \ge p$ and $\mu_{[y]_{\epsilon}}(z) \ge p$ for some $p \le \epsilon$. That is, $\mu(x, z) \ge p$ and $\mu(y, z) \ge p$. Thus $\mu(x, y) \ge (\mu \circ \mu)(x, y) = \sup_{k \in X} \min(\mu(x, k), \mu(k, y)) \ge \min(\mu(x, z), \mu(y, z)) \ge p$. That is, $x \prec_p y$. This contradicts $[x]_p \cap [y]_p = \emptyset$.

 (\rightarrow) Suppose $\alpha \in [x]_p \cap [y]_p$. Then $x \prec_p \alpha$ and $y \prec_p \alpha$. Since \prec_p is an equivalence relation by Proposition 4.2, $x \prec_p y$. Thus $\mu(x,y) \ge p$. Since $\mu(y,y) \ge \epsilon$ and $p \le \epsilon$, $(\mu_{[x]_{\epsilon}} \cap \mu_{[y]_{\epsilon}})(y) = \min(\mu(x,y), \mu(y,y)) \ge$ p. This contradicts that $(\mu_{[x]_{\epsilon}} \cap \mu_{[y]_{\epsilon}})(z) = 0$ for all $z \in X$. \Box

76

THEOREM 4.7. Let μ be an ϵ -fuzzy equivalence relation on a set X. Let $\{[x_i]_p : x_i \in X, i \in I\}$ be a partition of X. Then $\{\mu_{[x_i]_{\epsilon}} : x_i \in X, i \in I\}$ is a fuzzy partition of a fuzzy set χ_X^p on X.

Proof. Let $i, j \in I$ with $i \neq j$. Then $[x_i]_p \cap [x_j]_p = \emptyset$. By Lemma 4.6, $(\mu_{[x_i]_{\epsilon}} \cap \mu_{[x_j]_{\epsilon}})(z) = 0$ for all $z \in X$. Let $y \in X$. Then $y \in [x_k]_p$ for some $k \in I$. Since $y \prec_p x_k$, $\mu(y, x_k) \ge p$. Thus

$$(\bigcup_{i \in I} \mu_{[x_i]_{\epsilon}})(y) = \sup_{i \in I} \mu_{[x_i]_{\epsilon}}(y) = \sup_{i \in I} \mu(x_i, y) = \mu(x_k, y) \ge p.$$

References

- 1. J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1967), 145-174.
- K. C. Gupta and R. K. Gupta, *Fuzzy equivalence relation redefined*, Fuzzy Sets and Systems **79** (1996), 227–233.
- V. Murali, Fuzzy equivalence relation, Fuzzy Sets and Systems 30 (1989), 155– 163.
- C. Nemitz, Fuzzy relations and fuzzy function, Fuzzy Sets and Systems 19 (1986), 177–191.
- 5. E. Sanchez, *Resolution of composite fuzzy relation equation*, Inform. and Control **30** (1976), 38–48.
- R. T. Yeh, Toward an algebraic theory of fuzzy relational systems, Proc. Int. Congr. Cybern. (1973), 205–223.
- 7. L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.

Department of Mathematics Seoul Women's University Seoul, 139–774, Korea *E-mail*: ihchon@swu.ac.kr