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e-FUZZY EQUIVALENCE RELATIONS

INHEUNG CHON

ABSTRACT. We find the e-fuzzy equivalence relation generated by
the union of two e-fuzzy equivalence relations on a set, find the e-
fuzzy equivalence relation generated by a fuzzy relation on a set,
and find sufficient conditions for the composition p o v of two e-
fuzzy equivalence relations pu and v to be the e-fuzzy equivalence
relation generated by p U v. Also we study fuzzy partitions of e-
fuzzy equivalence relations.

1. Introduction

The concept of a fuzzy relation was first proposed by Zadeh ([7]).
Subsequently, Goguen ([1]) and Sanchez ([5]) studied fuzzy relations in
various contexts. In [4] Nemitz discussed fuzzy equivalence relations,
fuzzy functions as fuzzy relations, and fuzzy partitions. Murali ([3])
developed some properties of fuzzy equivalence relations and certain
lattice theoretic properties of fuzzy equivalence relations. The standard
definition of a reflexive fuzzy relation pu on a set X, which Murali ([3])
and Nemitz ([4]) used in their papers, is u(z,z) =1 for all z € X. Yeh
([6]) weakened the standard reflexive fuzzy relation to u(z,z) > € > 0,
which is called an e-reflexive fuzzy relation. Also Gupta et al. ([2])
proposed a generalized definition of a fuzzy equivalence relation on a
set, which is called a G-reflexive fuzzy relation, and developed some
properties of that relation.

We characterize the generated e-fuzzy equivalence relations on sets
and fuzzy partitions of e-fuzzy equivalence relations. In section 2 we
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review some basic definitions and properties of fuzzy relations and e-
reflexive fuzzy relations. In section 3 we find the e-fuzzy equivalence
relation generated by the union of two e-fuzzy equivalence relations on
a set, find the e-fuzzy equivalence relation generated by a fuzzy relation
on a set, and show that if 4 and v are e-fuzzy equivalence relations on
a set S such that pov =vopu, u(x,z) > v(x,y), and v(y,y) > u(z,y)
for all z,y € S, then pov is the e-fuzzy equivalence relation generated
by p Uwv. In section 4 we define a fuzzy partition based on e-fuzzy
equivalence relations and construct a fuzzy partition.

2. Preliminaries

In this section we recall some basic definitions and properties of
fuzzy relations and e-reflexive fuzzy relations.

DEFINITION 2.1. A function B from a set X to the closed unit
interval [0, 1] in R is called a fuzzy set in X. For every x € B, B(x) is
called a membership grade of x in B.

The standard definition of a reflexive fuzzy relation p in a set X
demands p(x,z) = 1. Yeh ([6]) weakened this definition as follows.

DEFINITION 2.2. A fuzzy relation p in a set X is a fuzzy subset
of X x X. pis e-reflexive in X if p(x,z) > € >0 for all x € X. p is
symmetric in X if p(x,y) = p(y, z) for all z,y in X. The composition
Ao u of two fuzzy relations A,y in X is the fuzzy subset of X x X
defined by

(Ao p)(z,y) = sup min(A(z,2), u(z,y)).
zeX
A fuzzy relation p in X is transitive in X if pop C p. A fuzzy relation p
in X is called e-fuzzy equivalence relation if p is e-reflexive, symmetric,
and transitive.

Let Fx be the set of all fuzzy relations in a set X. Then it is easy
to see that the composition o is associative and Fx is a monoid under
the operation of composition o.

DEFINITION 2.3. Let u be a fuzzy relation in a set X. p~! is

defined as a fuzzy relation in X by u~(x,y) = u(y, ).
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It is easy to see that (uov) ™! =v=1opu™! for fuzzy relations u

and v.

PrOPOSITION 2.4. Let pu be a fuzzy relation on a set X. Then
Use, u™ is the smallest transitive fuzzy relation on X containing p,
where u" = popo---op.

Proof. See Proposition 2.3 of [5]. O

PROPOSITION 2.5. Let p be a fuzzy relation on a set X. If p is
symmetric, then so is Uy2 ; p™, where p'* = ppopo---0 p.

Proof. See Proposition 2.4 of [5]. O

PROPOSITION 2.6. Let v be a fuzzy relation on a set S. If p is

e-reflexive, then so is US2; u", where p™* = ppopo---op.

Proof. Clearly p is e-reflexive. Suppose u”* is e-reflexive. Then

1) = (i 0 ), ) = sup minfy (z, 2), p(z, )

> min[uf (z, x), p(z,z)] >e> 0.

1

By the mathematical induction, " is e-reflexive for all natural numbers
n. Thus [Up2,p"](z, ) = sup [u(z,z), (pop)(z,z), ...] = €>0.
Hence U2, u™ is e-reflexive. O

PROPOSITION 2.7. Let u and each v; be fuzzy relations in a set X
for alli € I. Then po(Nwv;) C N (pow;) and (Nv)opu C N (v;0p).
i€l i€l i€l i€l

Proof. Straightforward. 0

3. e-Fuzzy equivalence relations generated by fuzzy rela-
tions

In this section we characterize the generated e-fuzzy equivalence
relations on sets.

ProproOSITION 3.1. Let p and v be e-fuzzy equivalence relations
in a set X. Then p N v is an e-fuzzy equivalence relation.
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Proof. It is clear that pu N v is e-reflexive and symmetric. By
Proposition 2.7, [(uNv)o(unNv)] C [po (pNuv)Nyo(pnv) C
[(op)N(pov)|N[(vou)N(vov)] € [uN(pov)]N[(vop)Nr] € pNv. That
is, u N v is transitive. Thus pu N v is an e-fuzzy equivalence relation. [

It is easy to see that even though i and v are e-fuzzy equivalence
relations, p U v is not necessarily an e-fuzzy equivalence relation. We
find the e-fuzzy equivalence relation generated by pU v on a set in the
following proposition.

PROPOSITION 3.2. Let p and v be e-fuzzy equivalence relations
on a set S. Then the e-fuzzy equivalence relation generated by p U v
inSisUX  (pnUr)" =(pUr)U[(pUrv)o(pUr)]U....

Proof. Clearly (uUv)(x,z) > € > 0. That is, upUv is e-reflexive. By
Proposition 2.6, US2 ; (nUv)™ is e-reflexive. Clearly pUv is symmetric.
By Proposition 2.5, US2 (U v)™ is symmetric. By Proposition 2.4,

o (uUr)™ is transitive. Hence U2, (unUv)™ is an e-fuzzy equivalence
relation containing pUwv. Let A be an e-fuzzy equivalence relation in S
containing pUwv. Then US2 ;(pUv)” CUSL A" =AU (Ao A)U (Ao Ao
AU+ CAUAU--- = A Thus US2 , (nUv)™ is the e-fuzzy equivalence
relation generated by p U v. OJ

THEOREM 3.3. Let u and v be e-fuzzy equivalence relations on a
set S such that u(x,z) > v(xz,y) and v(y,y) > p(x,y) for all z,y € S.
If yov = vopu, then o v is the e-fuzzy equivalence relation on S
generated by puUwv.

Proof.
(pov)(x, ) = sup min [u(z, 2), v(z,x)] > min (u(z, z),v(z, 7)) > >0
2€8
for all z € S. That is, pu o v is e-reflexive. Since p and v are sym-
metric, (uov)™ = v lopu™t = voyu = pov. Thus pov is

symmetric. Since p and v are transitive and the operation o is as-
sociative, (o v) o (o) = po(vop)ov = po(uov)oy =
(op)o(rov) C pov. Hence po v is an e-fuzzy equivalence rela-

tion. Since v(y,y) > u(z,y), (pov)(z,y) = 21612 min[u(z, 2),v(z,y)] >
min(u(z, y), v(y,y)) = p(@,y). Since p(z, ) > v(z,y), (pov)(z,y) =
31612 min [u(z, 2),v(z,y)] > min (u(z,z),v(z,y)) = v(z,y). Thus
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(Hov)(z,y) > max (u(z,y),v(z,y)) = (pUv)(z,y) for all z,y € S.
Thus pUv C powv. Let X be an e-fuzzy equivalence relation in S con-

taining pUw. Since A is transitive, pov C (pUv)o(pUr) C Ao X C A
Thus p o v is the e-fuzzy equivalence relation generated by pUwv. [

THEOREM 3.4. Let u be a fuzzy relation on a set S. Then the
e-fuzzy equivalence relation generated by p in S is US (p U p~t U 6)",
where 0 is a fuzzy relation in S such that 0(a,a) = € for all a € S and
0(z,y) = 0(y, x) < min [u(z,y), u(y, )] for all z,y € S with x # y.

Proof. (u U p~tU)(a,a) > O(a,a) = € > 0 for all a € S.
Thus p U =t U6 is ereflexive. Let puy = pUp~tU@O. By Propo-
sition 2.6, US2 1#1 is e-reflexive. pi(x,y) = (LU p~t UO)(x,y) =
maxu(e,y), p (w,),0z,9)] = maxlp (y,x), wly, x). 0y, )
= (nUp~tub)(y,z) = pi(y,x). Thus p; is symmetric. By Proposition
2.5, UpL, pt is symmetric. By Proposition 2.4, Uy, u is transitive.
Hence Up2; pf is an e-fuzzy equivalence relation containing p. Let v be
an e-fuzzy equivalence relation containing p. Then p(z,y) < v(z,y),
pt(zy) = ply, @) < v(y,2) = v(z,y), and 0(z,y) < u(, y) < v(z,y)
for all z,y € S such that z # y. That is, v(z,y) > (U=t UO)(z,y)
for all z,y € S such that = # y. V(a,a) > pla,a) = p(a,a)
for all @ € S. Since #(a,a) = € and v(a,a) > € for all a € 5,
0(a,a) < v(a,a). That is, ,ul(a a) < v(a,a) for all a € S. Thus u; =
(nUp~tU0) C v. Suppose pk C v. Then py* (z,y) = (pf o) (w,y) =

sup minik (@, 2), i (2, )] < sup minlv(z,2), v(2,9)] = (v o v)(@,y).
z€S z€S

Since v is transitive, ,ulfﬂ C vov C v. By the mathematical induc-
tion, pf C v forn=1,2.... Hence US%; pul = pg U (1 0o pr) U (pg 0
pyopy)--- Co. O

4. Partitions of e-fuzzy equivalence relations

Murali([3]) studied partition of fuzzy equivalence relations. In
this section we define a fuzzy partition based on e-fuzzy equivalence
relations and construct a fuzzy partition, which may be considered as
a generalization of Murali’s work.

DEFINITION 4.1. Let p be an e-fuzzy equivalence relation on a
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set X. For 0 < p < ¢, a relation <, on X is defined by z <, y iff
pu(z,y) = p.
PROPOSITION 4.2. Let u be an e-fuzzy equivalence relation on a

set X. Then the relation <, on a set X defined in Definition 4.1 is an
equivalence relation.

Proof. Since pu(x,x) > € > p, <, is reflexive. Suppose =z <, .
Then p(z,y) > p, and hence p(y, x) > p. Thus <, is symmetric. Sup-
pose x <, y and y <, z. Then p(z,y) > p and pu(y,z) > p. p(z, z2) =

(oo mz) = s min(ekh) >
€
min(u(z,y), u(y, 2)) > p. Thus <, is transitive. O

DEFINITION 4.3. Let p be an e-fuzzy equivalence relation on a set
X and let <, be an equivalence relation on X defined in Proposition
4.2. The equivalence class containing x is denoted by [z],. That is,
[z], ={ye Xy <, z} for p<e

DEFINITION 4.4. Let p be an e-fuzzy equivalence relation on a set
X and let <, be an equivalence relation on X defined in Proposition
4.2. A fuzzy subset pj;, on aset X is defined by up, (y) = p(z,y).

DEFINITION 4.5. Let {v; : € I} be a collection of fuzzy sets on a
set X. If (Ujervi)(2) > p and v; Ny = 0 for all 4,5 € I with i # j,
we call {v; 14 € I} is a fuzzy partition of a fuzzy set x5 on X, where
X% : X — R is a function defined by x% (z) > p for all z € X.

LEMMA 4.6. Let p be an e-fuzzy equivalence relation on a set X.
Then [x], N [y], = 0 for some 0 < p < € iff (ppy), N ppy).)(2) = 0 for all
ze X.

Proof. (—) Suppose (fz), N py).)(2) > 0 for some z € X. Then
2], (2) > p and ppy) (2) > p for some p < e. That is, p(x,z) > p and

#y, 2) 2 p. Thus p(@,y) 2 (pop)(@,y) = sup min(p(z, k), j(k, y)) =
€
min(u(x, z), u(y, z)) > p. That is, x <, y. This contradicts [z], N[y], =

(—) Suppose « € [z], N [y]lp. Then z <, o and y <, . Since <, is
an equivalence relation by Proposition 4.2, x <, y. Thus u(x,y) > p.

Since p(y,y) > € and p < €, (puga], O ppy) ) (y) = min(u(z, y), p(y,y)) >
p. This contradicts that (pz), N g, )(2) =0 for all z € X. O
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THEOREM 4.7. Let p be an e-fuzzy equivalence relation on a set
X. Let {[z;], : z; € X, i € I} be a partition of X. Then {ji,). : T; €
X, i € I} is a fuzzy partition of a fuzzy set x% on X.

Proof. Let i,j € I with i # j. Then [z;], N [x;], = 0. By Lemma
4.6, (H[z,]. N He;).)(z) = 0 for all z € X. Let y € X. Then y € [z],
for some k € I. Since y <, x, pu(y, ) > p. Thus

(Uier Miz,].)(y) = supier pe,). (Y) = supier @iy ) = p(Tr,y) > .

0
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