ZERMELO'S NAVIGATION PROBLEM ON HERMITIAN MANIFOLDS

NANY LEE

ABSTRACT. In this paper, we apply Zermelo's problem of navigation on Riemannian manifolds to Hermitian manifolds. Using a similar technique with which we define a Randers metric in a Finsler manifold by perturbing Riemannian metric with a vector field, we construct an (a, b, f)-metric in a Rizza manifold from a Hermitian metric and a given vector field.

1. Introduction

In [BRS04], Bao, Robles and Shen dealt with Zermelo's problem of navigation on Riemannian manifolds and Randers metric as its solution. Here we will consider Zermelo's navigation problem on Hermitian manifolds.

Let M be a smooth 2n-dimensional manifold with almost complex structure f and a Riemannian metric h which is compatible with f. Let W be a vector field on M. As in Zermelo's problem of navigation on Riemannian manifolds, W can be considered as a force of a wind or a current. But this time, we will think that W accompanies another influential force fW. So we have a combined force W + fW.

In [BRS04], if h(W + fW, W + fW) < 1, i.e., h(W, W) < 1/2, then we have a Randers metric L from the data of the Riemannian metric hand the vector field W + fW. We show that the necessary and sufficient condition for this Randers metric L to be a Rizza metric is that W must be a zero vector field. So we need to modify Randers metric L by adding one correction term in order to be a Rizza metric. The resulting metric

Received April 8, 2006.

²⁰⁰⁰ Mathematics Subject Classification: Primary 53B40; Secondary 53C60.

Key words and phrases: Finsler metric, generalized Randers metric, (a, b, f)metric, Rizza manifold, Zermelo's navigation problem.

Partially supported by the University of Seoul, 2004.

Nany Lee

happens to be an (a, b, f)-metric, which is an example of a generalized Randers metric.

In [Lee03], we computed the fundamental tensor g_{ij} of (a, b, f)-metric and its inverse g^{ij} . Here we prove that (a, b, f)-metric is a Rizza metric by showing that $g_{ij}f_k^i f^k y^j = 0$. As for Randers metric in the Finsler manifolds, (a, b, f)-metrics are very interesting class in Rizza manifolds. For further description of (a, b, f)-metrics, we refer to [I-H95, I-H96] and [Lee03].

2. Preliminaries

Let (M, f, L) be a 2*n*-dimensional manifold with an almost complex structure f and a Finsler metric L. In [Riz62, Riz63, Riz64], G. B. Rizza introduced the so-called Rizza condition

$$L(x, \phi_{\theta}(y)) = L(x, y)$$
 for all $x \in M$, $y \in T_x M$ and $\theta \in \mathbb{R}$,

where $\phi_{\theta_j}{}^i = (\cos \theta) \delta_j^i + (\sin \theta) f_j^i$.

In [Heil65], E. Heil showed that if the fundamental tensor g_{ij} of the Finsler metric L satisfies $g_{pq}(x, y)f_i^p(x)f_j^q(x) = g_{ij}$, then the Finsler metric L is a priori a Riemannian metric. Thus it is necessary to consider a weak condition on the Finsler metric like the Rizza condition. Note that the Rizza condition is equivalent to $g_{pq}(x, y)f_k^p(x)y^ky^q = 0$.

Recall that a generalized Randers metric is a Finsler metric in the form $L = \alpha + \beta$, where α is a Riemannian metric and β is a singular Riemannian metric. If β is a 1-form, then L is a Randers metric.

Now we will consider generalized Randers metrics on almost Hermitian manifolds. Let M be a 2n-dimensional Riemannian manifold with an almost complex structure f and a Riemannian metric α which is compatible with f. Given a non-vanishing covariant vector field $b_i(x)$ on M, we get a singular Riemannian metric

$$\beta(x,y) = (b_{ij}(x)y^iy^j)^{1/2}$$

where $b_{ij} = b_i b_j + f_i f_j$, $f_i = b_r f_i^r$. Such $L = \alpha + \beta$ is an interesting example of a generalized Randers metric. We call this metric an (a, b, f)-metric and (M, L) an (a, b, f)-manifold.

LEMMA 2.1. A (a, b, f)-metric $L = \alpha + \beta$ satisfies a Rizza condition.

80

Proof. The fundamental tensor g_{ij} of L can be written by

$$g_{ij} = \frac{L}{\alpha}a_{ij} + \frac{L}{\beta}b_ib_j + \frac{L}{\beta}f_if_j + L_iL_j - \frac{L}{\alpha}\alpha_i\alpha_j - \frac{L}{\beta}\beta_i\beta_j,$$

where $\alpha_i = \frac{\partial \alpha}{\partial y^i}$, $\beta_i = \frac{\partial \beta}{\partial y^i}$, $L_i = \alpha_i + \beta_i$. It is sufficient to show that $g_{pq}(x,y)f_k^p(x)y^ky^q = 0$. By direct calculation, we get

$$a_{pq}(x,y)f_{k}^{p}(x)y^{k}y^{q} = 0, \qquad \alpha_{p}(x,y)f_{k}^{p}(x)y^{k} = \frac{a_{pq}(x,y)f_{k}^{p}(x)y^{k}y^{q}}{\alpha(y)} = 0,$$

$$b_{p}b_{q}f_{k}^{p}(x)y^{k}y^{q} = -f_{p}f_{q}f_{k}^{p}(x)y^{k}y^{q},$$

$$L_{p}L_{q}f_{k}^{p}(x)y^{k}y^{q} = L\frac{b_{pq}(x,y)f_{k}^{p}(x)y^{k}y^{q}}{\beta(y)} = \frac{L}{\beta}\beta_{p}\beta_{q}f_{k}^{p}(x)y^{k}y^{q}$$

using the fact that $f \circ f = -Id$ and $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ is Hermitian. This leads to $g_{pq}(x,y)f_k^p(x)y^ky^q = 0$.

3. Construction of (a, b, f)-metrics

Recall the following in [BRS04]:

PROPOSITION 3.1. A strongly convex Finsler metric is of Randers metric $L = \alpha + \beta$ if and only if L solves the Zermelo navigation problem on a Riemannian manifold (M, h), with the influence W satisfying h(W, W) < 1.

 $L = \alpha + \beta$ is related with the Riemannian metric h and the vector field W by the following formulas

$$\alpha(x,y) = \sqrt{a_{ij}(x)y^i y^j}, \qquad \beta(x,y) = b_i(x)y^i,$$

where

$$a_{ij} = \frac{h_{ij}}{\lambda} + \frac{W_i}{\lambda} \frac{W_j}{\lambda}, \qquad b_i = -\frac{W_i}{\lambda}$$

and $W_i = h_{ij} W^j$ and $\lambda = 1 - W^i W_i$.

Now let M be a 2*n*-dimensional Riemannian manifold with an almost complex structure f and consider a Riemannian metric h satisfying h(X,Y) = h(fX, fY). Let W be a vector field with h(W,W) < 1. By perturbing a Riemannian metric h under the influence of W, we obtain Randers metric $L = \alpha + \beta$.

Nany Lee

Suppose $L = \alpha + \beta$ is a Rizza metric, i.e., $g_{pq} f_k^p y^k y^q = 0$. The fundamental tensor g_{ij} of $L = \alpha + \beta$ is

$$g_{ij} = \frac{L}{\alpha}a_{ij} - \frac{\beta}{\alpha}l_il_j + l_ib_j + l_jb_i + b_ib_j,$$

with $l_i = \alpha_{y^i} = \frac{a_{ik}y^k}{\alpha}$.

By direct calculation, we get

$$g_{pq}f_k^p y^k y^q = \frac{L}{\alpha} \left\{ a_{pq}f_k^p y^k y^q + \alpha(y)\beta(fy) \right\} = 0,$$
$$a_{pq}f_k^p y^k y^q + \alpha(y)\beta(fy) = 0.$$

Plugging -y in y, we also get

$$a_{pq}f_k^p y^k y^q - \alpha(y)\beta(fy) = 0.$$

Thus $\beta(fy) = 0$ which means W = 0.

PROPOSITION 3.2. Let (M, h) be a 2n-dimensional Riemannian manifold with an almost complex structure f satisfying h(X, Y) = h(fX, fY). Let $L = \alpha + \beta$ be a solution to the Zermelo navigation problem on the Riemannian manifold (M, h) under the influence W. Then L is also a Rizza metric if and only if W = 0.

Let W be any vector field with h(W+fW, W+fW) = 2h(W, W) < 1. From the data of the Riemannian metric h and the vector field W + fW, we get the Randers metric $L_o = \alpha_o + \beta_o$. By the above argument, L_o is not a Rizza metric. So we need the correction term

$$\Delta(y) = \frac{2}{\lambda^2} h(W, y) h(fW, y).$$

Now we will construct a Rizza metric.

THEOREM 3.3. Let (M, h) be a 2n-dimensional Riemannian manifold with an almost complex structure f satisfying h(X, Y) = h(fX, fY) and W be a vector field with $h(W, W) \neq 1$. Let α and β be such that

$$\alpha^2 = \alpha_o^2 - \Delta$$
 and $\beta^2 = \beta_o^2 - \Delta$.

Then $L = \alpha + \beta$ is an (a, b, f)-metric and L is regular on \mathcal{D} , where \mathcal{D} is a complement of $\{y|h(W, y) = h(fW, y) = 0\}$.

82

Proof. We can have $a_{ij} = \frac{h_{ij}}{\lambda} + \frac{W_i}{\lambda}\frac{W_j}{\lambda} + \frac{W_p f_i^p}{\lambda}\frac{W_q f_j^q}{\lambda}$ which satisfies $a_{pq}(x)f_k^p f_j^q = a_{ij}(x)$. If we let $b_i = \frac{W_i}{\lambda}$, then $\beta(x,y) = (b_i b_j + f_i f_j)^{1/2}$ with $f_i = b_p f_i^p$. Thus this $L = \alpha + \beta$ is a (a, b, f)-metric. By the Theorem 4.1 in [Lee03], L is strongly convex on \mathcal{D} . Thus $L = \alpha + \beta$ is a y-local Finsler structure on \mathcal{D} and satisfies Rizza condition.

References

- [BCS00] D. Bao, S. S. Chern, and Z. Shen, An introduction to Riemannian-Finsler geometry, Graduate Texts in Mathematics, Springer-Verlag, Berlin, Heidelberg, New York, 2000.
- [BRS04] D. Bao, S. S. Robles, and Z. Shen, Almost Hermitian Finsler manifolds, J. Diff. Geom. 66 (2004), 377–435.
- [Heil65] E. Heil, A relation between Finslerian and Hermitian metrics, Tensor(N.S.) 16 (1965), 1–3.
- [I-H96] Y. Ichiiyō, M. Hashiguchi, On (a, b, f)-metrics II, Rep. Fac. Sci. Kagoshima Univ. Math. Phys. Chem 29 (1996), 1–5.
- [I-H95] Y. Ichiiyō, M. Hashiguchi, On (a, b, f)-metrics, Rep. Fac. Sci. Kagoshima Univ. Math. Phys. Chem 28 (1995), 1–9.
- [Lee03] N. Lee, On the special Finsler metric, Bull. Korean Math. Soc. 38 (2003), no. 2, 303–315.
- [Mat86] M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, Japan, 1986.
- [Riz62] G. B. Rizza, Strutture di Finsler sulle varietà quasi complesse, Lincei Rend. 33 (1962), no. 8, 271–275.
- [Riz63] G. B. Rizza, Strutture di Finsler di tipo quasi Hermitiano, Riv. Mat. Univ. Parma 4 (1963), no. 2, 83–106.
- [Riz64] G. B. Rizza, F-forme quadratiche ed hermitiane, Rend. Mat. Appl. 23 (1964), no. 5, 221–249.

Department of Mathematics The University of Seoul Seoul, 130–743, Korea *E-mail*: nany@uos.ac.kr