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ON THE INITIAL SEED OF THE RANDOM NUMBER

GENERATORS

Tae-Soo Kim and Young-Kyun Yang∗

Abstract. A good arithmetic random number generator should
possess full period, uniformity and independence, etc. To obtain the
excellent random number generator, many researchers have found
good parameters. Also an initial seed is the important factor in
random number generator. But, there is no theoretical guideline
for using the initial seeds. Therefore, random number generator is
usually used with the arbitrary initial seed. Through the empirical
tests, we show that the choice of the initial values for the seed is
important to generate good random numbers

1. Introduction

The ability to generate satisfactory sequences of random numbers is
one of the key links between Computer Science and Statistics. Stan-
dard methods may no longer be suitable for increasingly sophisticated
uses, such as in precision simulation studies. A simulation of any system
or process in which there are inherently random components requires a
method of generating or obtaining numbers that are random, in some
sense. All the randomness required by the simulation model is simulated
by various random number generators whose output is assumed to be
a sequence of independent uniform random variables, which is denoted
“U(0, 1)”. These random numbers are then transformed as needed to
simulate random variables from different probability distributions. But,
the random variable in U(0, 1) is an mathematical abstraction. In prac-
tice, there are no true random variables. As of today, from a prescribed
mathematical formula but satisfy different requirements as if they were
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true random numbers, we gain the sequence. Such a sequence is called
the pseudo-random and the program or the procedure that produce such
a sequence is called pseudo-random number generator. The study of the
methodology of pseudo-random numbers has a long history. The most
popular algorithm for generating pseudo-random numbers was suggested
by Lehmer in 1949. It is called the congruential method. The method
relies on a sequence of integers that are computed by one formula

(1) mi = g(mi−1,mi−2, · · · )(modM)

where a fixed deterministic function g of previous given elements
mi−1,mi−2, · · · , the modulo M are prescribed integers. As pseudo-
random numbers, the fractions mi/M are used. In particular, if g is
a linear function of mi−1,mi−2, · · · , we called it as a linear congruen-
tial generator ( LCG ). In general the LCG is probably the most widely
used and best understood kind of random-number generator. Turning
to small M the length of period reduces. On the other hand, if a long
period generator is implemented, then the generation is slow. So there
are many alternative types. In order to the formula (1.1) have the full
period and good statistical properties, the values of the parameters in a
function g must be carefully chosen [1,4,7]. To generate pseudo-random
numbers of long period and good statistical properties, methods rec-
ommended by many scholars are the Multiple Recursive Generator [3,
4, 8, 9] and the Combined Generator [5,8,10]. In particular, we stud-
ied two combined multiple recursive generators which were designed by
L’Ecuyer[9]. We have interest to the statistical properties of generators.

In the formula (1.1), when g(mi−1,mi−2, · · · ,mi−q) = a1mi−1+a2mi−2

+ · · ·+ aqmi−q, where ai’s are constants and the initial values
mi−1,mi−2, · · · , mi−q are not all zero. We called them the qth-order
multiple recursive generators ( MRGs ). From the finite field theory, the
qth-order MRGs can produce random numbers of full period M q − 1 if
and only if the polynomial f(x) = xq − a1x

q−1 − · · · − aq is a primitive
polynomial modulus M . Knuth [6] describes the following conditions for
testing the primitiveness modulo M :

(i)(−1)q−1aq is a primitive root modulo M ,

(ii) [xr mod f(x)] mod M = (−1)q−1aq,

(iii) degree{[xr/s mod f(x)] mod M} > 0, for each prime factor s of

r, where r =
M q − 1

M − 1
.
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Theoretically, there are exactly choices of (a1, a2, · · · , aq) which satisfy
these conditions, where φ(M q−1) is the Euler function defined as number
of integers which is smaller than and relatively prime to Mk − 1 . For
the simplest case of q = 2 and the very popular modulus M = 231 − 1,
there are around 5.74E17’s candidates [4]. Hence a significant amount of
computation is involved in searching for (a1, a2, · · · , aq) which are able
to produce random numbers of full period.

To increase the period and try to get rid of the regular patterns dis-
played by LCGs, it has often been suggested that different generators be
combined to produce a hybrid one. Such combination is often viewed as
completely heuristic and is sometimes discouraged. But besides being
strongly supported by empirical investigations, combination has some
theoretical support. First, in most cases, the period of the hybrid is
much longer than that of each of its components, and can be computed.
Second, there are theoretical results suggesting that some forms of com-
bined generators generally have better statistical behavior. In this paper,
we think about the combination of two MRGs, which w as developed and
studied by L’Ecuyer, is defined by

m1,i = (a1,1m1,i−2 − a1,2m1,i−3)[ mod (232 − 209)],(2)

m2,i = (a2,1m2,i−1 − a2,2m2,i−3)[ mod (232 − 22853)],(3)

Yi = (Mi,i −m2,i)[ mod (232 − 209)],(4)

Ui =
Yi

232 − 209
,(5)

where a1,1 = 1403580, a1,2 = 810728, a2,1 = 527612, a2,2 = 1370589
and has period of approximately 2191 ( which is about 3.1 × 1057 ) as
well as excellent statistical properties through dimension 32 [2]. The
advantage of the above generator is a brief program, simple computa-
tions and a huge period. In order to use this algorithm, likewise using
any other random generators, we need the seed vector with 6-elements
{m1,0,m1,1, m1,2,m2,1, m2,2,m2,3}.

The choice of the initial seed vectors in random number generator
could not be determined by the theoretical basis. The recommendation
to select initial values at random is doubtful. In general, the initial
seed vectors could be chosen by empirical methods. To be sure, the
careful selection of the seeds is important to generate the pseudo-random
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numbers. So, L’Ecuyer gave the 10,000’s seeds vector as related header-
file and asserted that the results have excellent statistical properties.
But, for the empirical test to see the uniformity and independence of
the two combined-MRGs, we obtained the different results. The test
results will be given in the next section.

2. The Empirical Tests

In general, theoretical test examine global randomness. However,
since most of the time, only a small fraction of the whole cycle of random
numbers will be used in simulation studies, the local randomness is also
very important. The local evaluation is usually performed by statisti-
cally testing subsequences of random numbers produced from a generator
to see how close those numbers resemble i.i.d. uniform random variable.
Some famous statistical tests are the runs and auto-correlation tests for
testing independence and the chi-square (or frequency) and serial tests
for testing uniformity in different dimensions. In this section, we practice
the various simulations to test the uniformity and independence of dis-
tribution of the corresponding pseudo-random numbers. And all tests
are related to the deterministic interpretation of goodness-of-fit tests.
In facts, d-dimensional random points with independent Cartesian co-
ordinates (γ1, · · · , γd), (γd+1, · · · , γ2d), (γ2d+1, · · · , γ3d), · · · are uniformly
distributed in the d-dimensional unit cube at any d. This property
is necessary and sufficient for a successful implementation of Monte
Carlo algorithms with constructive dimension d. To test whether the
null hypothesis H0 : the above d-tuples sequences are distributed uni-
formly on [0, 1]d, is true or not, divide [0, 1] into k subintervals of equal
size and let fj1,j2,··· ,jd

be the number of γi’s having first component
in subinterval j1, second component in subinterval j2, etc. If we let

χ2
N = kd

N

∑k
j1=1 · · ·

∑k
jd=1(fj1,j2,··· ,jd

− N
kd )2, then χ2

N will have an ap-

proximate chi-square distribution with degree of freedom kd − 1, under
the null hypothesis H0 is true. The smaller is χ2

N the better is the
agreement of empirical values with theoretical ones. Large values χ2

N

correspond to small p-values. So, too small values of p-values indicate
that the experimental data contradicts to our uniformity hypothesis.
Firstly, for the uniformity, we have tested for the case d = 1, which is
called the frequency or chi-square test, and d = 2, 3, 4, which are called
the serial tests. For modelling different problems, different quantities
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of pseudo-random numbers are necessary. Therefore, we have simulated
various initial seeds of a sequence with lengths N = Nd × 2s, where
s = 0, 1, 2, · · · , 14, 600, 300, 250, 150, according to the d = 2, 3 and 4,
respectively. And let k the number of subintervals of [0, 1] be as 16, 8, 5,
and 4 with respect to the d = 1, 2, 3, and 4.

Secondly, for the test of independence, we think the run test. Let ni

be the number of runs of length i in a sequence of N = 600× 2s, where
s = 0, 1, 2, · · · , 14. For an independent sequence, the expected values of
ni for runs up and down are given by
(1)

E(ni) =





2

(i + 3)!
[N(i2 + 3i + 1)− (i3 + 3i2 − i− 4)], i ≤ N − 2

2

N !
, i = N − 1

Under the null hypothesis H0 : the pseudo-random numbers which
are generated by the two combined MRGs is distributed independently.

We know χ2
N =

∑4
i=1

(ni−npi)
2

npi
+

(n′5−np5)2

np5
where n′5 is the number of run

with length larger than 5, n = n1 + n2 + n3 + n4 + n′5 means the total
number of runs, and the probabilities pi = E(ni), for i = 1, 2, · · · , N−1,
will have an approximate chi-square distribution with degree of freedom
4.

For all tests, we use Φi = maxs χ2
N , for i = 1, which means the

frequency test, for i = 2, 3 and 4, which means the 2, 3, and 4 dimensional
serial tests, respectively, for i = 5, which means the run test as the
criteria. When all values of Φi are less than the quantiles Φ∗

i for this
tests with respect to p-values as 0.1, we will say that the pseudo-random
numbers generated by two-combined MRG are distributed uniformly
and independently. The recommendation of L’Ecuyer was arbitrarily to
select an initial value in 10, 000’s seed vectors was proposed in his header-
file. We have tested arbitrary 100 sequences initial seed vectors among
10, 000. And we selected the seed vectors meets criteria in all five tests at
the same time. The results of the above tests are terrible. The only one
5230th seed vector (1338960199, 3947731640, 1058186044, 1875415108,
1948201518, 3217931286) passed the all five tests. And the results Φi

and Pi = maxi P (χ2
N) = mini

∫∞
χ2

N
f(x)dx, where f(x) is a probability

density of χ2
N with degree of freedom kd− 1 , of each tests are described

in Table 1.
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Table 1. The results of test with the 5230th initial seed vector

Values of χ2
N in each tests

s Frequency Serial:2-dim Serial : 3-dim Run Test
0 15.6267 57.5467 118.75 1.44922
1 19.1733 56.2133 110 5.62656
2 12.52 69.6533 136.25 1.77436
3 12.1667 57.4933 133.75 4.17822
4 12.7433 46.32 124.922 2.46628
5 7.68667 55.7067 102.852 4.86404
6 7.035 54.9533 98.0469 1.7428
7 10.5175 48.9233 88.8867 1.42989
8 16.8548 72.095 110.542 1.57092
9 17.3196 75.4642 105.469 1.35517
10 19.6557 62.1771 106.177 3.69256
11 11.6118 61.3904 128.611 7.6133
12 15.2261 64.9315 144.329 3.31268
13 11.0268 53.8317 133.254 2.15742
14 13.4993 64.3363 136.213 3.42884

Φi = maxs χ2
N 19.6557 75.4642 144.329 7.6133

mini P (χ2
N) 0.19 0.14 0.1 0.11

Φ∗
i with

p-value 0.1 22.3 77.7 145 7.78

Continuously, we proceed with the five empirical tests for all given
10, 000’s seed vectors. It required the very enormous test time. We
found out the only 44 of 10, 000 passed all five tests. Table 2 and Table
3 at the end of the paper show the result of tests.

3. Conclusions

An ideal random number generator should possess at least the prop-
erties of long period, good lattice structure, and sound statistical prop-
erties. To generate good pseudo-random numbers, one method recom-
mended by many scholars is the multiple recursive and combined gener-
ator. We present empirical tests for two combined MRGs. As L’Ecuyer
asserted that the generator has a good theoretical property, but the
empirical tests shows the different results.
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In simulation studies, the quality of the random number generator
adopted has a major effect on the results derived. The arbitrary selec-
tions of the initial seed values in the random number generators would
be not suitable results. So, we select the initial conditions with atten-
tion. As a future theme, we would find the theoretical condition for good
random number generator in various cases.
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Table 2. The list of numbers among 10,000 which passed
the all five test in the L’Ecuyer’s header-file

Seeds The Seeds Vectors
Number m1,0 m1,1 m1,2

74 3793615118 2750706029 2156058298
256 474425456 4013621006 1047529229
315 778777092 3506874608 886397267
420 2858021237 130793867 2576255171
1007 1357637645 1059427249 800951665
1385 2324283389 3980402648 909451590
1561 4048081921 3484009500 1949064959
2069 2648774766 1836017866 109487550
2744 2045043622 3736990058 2158192863
3139 225105283 1028800446 3475530378
4081 468568482 60748908 3600254120
4415 4250970605 2247141194 4160009317
4950 4001071387 1935425346 2569502716
5147 3458369350 1365751610 1950454722
5230 3217931286 1948201518 1875415108
5376 1869132997 3411217504 4246800601
5798 2534516661 3392823319 2126521932
6020 1462998075 3841141927 815069390
6105 321831138 2513261002 3158817632
6118 1844407534 713506037 3904241368
6154 3331527132 1971780948 951052068
6246 3711507128 3658041075 1732724216
6537 1823785284 3740987246 420862234
6921 2660619449 739866491 1523313346
7389 3370051646 2351773946 3578192525
7900 801753079 1053157281 3143374566
8372 2311663784 635058214 420512396
8983 2330960437 3519068800 264254434
8990 3496226347 2759155171 387573809
9329 2165744782 4129645042 1719314779
9424 3172187716 1889519277 712896719
9542 4220822992 2571281666 615285499
9718 2032201018 1586274056 1588256539
9998 560024289 1830276631 144885590
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Table 3. The list of numbers among 10,000 which passed
the all five test in the L’Ecuyer’s header-file

Seeds The Seeds Vectors
Number m2,0 m2,1 m2,2

74 3079033430 2780569996 3936920391
256 2719529576 739324835 2964280517
315 387258206 219138949 2542372807
420 948143174 3901676992 4087606491
1007 1558460654 1972949201 3182661420
1385 3456420597 566308252 1902340646
1561 1932583407 3634728800 2787358029
2069 2022962442 3129355995 2917956914
2744 3952353473 3553708899 3379872074
3139 341271471 2907536336 2910932183
4081 1480623720 3200597697 3743886328
4415 19851053 3029883115 2473778054
4950 2843613632 1391350969 3143604249
5147 2112776806 1880897145 2809013922
5230 1058186044 3947731640 1338960199
5376 2727299193 2124744171 2208018226
5798 1644640541 2064925845 1553045961
6020 1378992995 787238713 3341259540
6105 548848962 3747010403 4151524440
6118 1863539380 2307868432 3912446738
6154 3071057510 4173447399 1708016892
6246 2827811352 3899843311 3845035395
6537 3065014647 974128584 3925274174
6921 1754164860 656162706 3755724112
7389 2668422752 4168309552 337611966
7900 4201753809 2762737338 3163930922
8372 3997997619 803364095 3678353094
8983 2694918818 3959029062 2393099014
8990 2458849830 3162364581 1962632124
9329 1209022018 2804053529 2557562793
9424 527235853 1060776700 1468758996
9542 689476507 1228137211 3484207157
9718 1860616301 765681796 3206901949
9998 1556615741 1597610225 1856413969


