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BIFURCATION THEORY FOR A CIRCULAR ARCH

SUBJECT TO NORMAL PRESSURE

Keumseong Bang∗† and JaeGwi Go

Abstract. The arches may buckle in a symmetrical snap-through
mode or in an asymmetry bifurcation mode if the load reaches a
certain value. Each bifurcation curve develops as pressure increases.
The governing equation is derived according to the bending theory.
The balance of forces provides a nonlinear equilibrium equation. Bi-
furcation theory near trivial solution of the equation is developed,
and the buckling pressures are investigated for various spring con-
stants and opening angles.

1. Introduction

Assume that the equation

F (X, p) = 0(1)

has the trivial solution X = 0 for all pressure p in an open neighbor-
hood of p0 ∈ R. If the Frechet derivative FX(0, p0) is invertible, then
the implicit function theorem guarantees the uniqueness of the trivial
solution [5, p310] and, when it is singular, bifurcations usually occur.
More precisely, let

F : U(0, p0) ⊂ H × R1 → K

be a C2-map on an open neighborhood U(0, p0) of the point (0, p0), where
H and K are real Banach spaces. The linearized operator FX(0, p0) :
H → K is assumed to be Fredholm and such that

1. N(FX(0, p0))= span {v}
Received May 18, 2006.
2000 Mathematics Subject Classification: 35C23.
Key words and phrases: bifurcation, nonlinear equilibrium equation.
* Corresponding author.
†This work was supported by a research fund of the Catholic University of Korea,
20060065.



114 Keumseong Bang and JaeGwi Go

2. N(F ∗
X(0, p0))= span {v∗}

3. < v∗, FX(0, p0)v > 6= 0 (bifurcation condition).

In [5, p311] it is shown that, under the above assumptions, (0, p0) is a
bifurcation point of the equation (1).

The arches may buckle or deviate from its circular shape if the pres-
sure is larger than a certain critical pressure. The equilibrium equations
are derived from a small perturbation from the circular arch, and the
buckling pressure is the first eigenvalue of the linearized system. When
the pressure is further increased, two types of bifurcation curves, sym-
metric and anti-symmetric curves develop versus pressure. Such a buck-
ling of a circular arch has been studied by Timoshenko and Gere [4],
Tadjbakhsh, I. and Odeh [3], and Pi, Bradford, and Uy [2]. An elastic,
thin, and inextensible circular arch is considered in this paper. The arch
is under uniformly distributed normal pressure. Bifurcation curve is de-
veloped near trivial solution, and buckling pressures are investigated for
various spring constants and opening angles.
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Fig. 1. Normal load uniformly distributed around arch
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Fig. 2. An elemental length

2. Derivation of equation

The balance (Fig 2) of forces in the normal and tangential directions
provides the equations

Tdg − dS − q
′
nds

′
= 0(2)

dT + Sdg = 0.(3)

By the balance of local moment we obtain

dM − Sds
′
= 0.(4)

Here T , S, and q
′
n are tension, shear, and normal stress on the surface,

respectively, and g is the local angle of inclination, and s
′
the arc length.

The Euler-Bernoulli law yields

M = EI
dg

ds′
,(5)

where EI is flexural rigidity. The combination of equations (2)∼ (5)
gives the nonlinear normalized equation

gssssgs − gsssgss − qngss + gssg
3
s = 0.(6)
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The arch length and normal stress are normalized by the variables s = s
′

R

and qn = q
′
nR3

EI
, where R is the radius of the circular arch.

The total angle change is resisted by an additional moment at the
bases with torsional spring constants. Thus the boundary conditions
are

τ
′
(g(−a) + a)− EI(gs′ (−a)− 1

R
) = 0(7a)

τ
′
(g(a)− a) + EI(gs′ (a)− 1

R
) = 0,(7b)

where τ ′ is the spring constant and 2a is the opening angle. The non-
dimensionless forms are

(g(0) + a)− τ(gs(0)− 2a) = 0(8a)

(g(1)− a) + τ(gs(1)− 2a) = 0,(8b)

where τ = EI/τ
′
R. The normalized Cartesian coordinates (x, y) are

related to g by

xs = cos g(s) ys = sin g(s).(9)

3. Bifurcation theory near trivial solution

Using the transform g̃(s) = g(1− s) and then dropping the tilde give
the followings:

gssssgs − gsssgss − pgss + gssg
3
s = 0

xs = cos g(s) ys = sin g(s)

(g(0)− a)− τ(gs(0) + 2a) = 0

(g(1) + a) + τ(gs(1) + 2a) = 0

x(0) = y(0) = y(1) = 0 x(1) =
sin a

a
.
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Now, we let




x1 = g + 2as− a

x2 = gs + 2a

x3 = gss

x4 = gsss

x5 = x(s)− 1
2a

[sin a− sin(a− 2as)]

x6 = y(s) + 1
2a

[cos a− cos(a− 2as)].

Then, the above boundary value problem can be converted into the
following form

F [X, p] = LX − f(X, p) = 0(11)

B[X] = B1X(0) + B2X(1) = 0,(12)

where

X = (x1, x2, x3, x4, x5, x6)
T(13)

L[X] =
d

ds
X(14)

f(X, p) =




x2

x3

x4

x3x4 + px3 − x3(x2 − 2a)3

x2 − 2a
cos g − cos(a− 2as)
sin g − sin(a− 2as)




B1 =




1 −τ 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
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B2 =




0 0 0 0 0 0
1 τ 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1




.

Let us define the domain Banach space to be

H = {X ∈ (C1[0, 1])6 : B[X] = 0},

where B is the boundary operator defined by (12). Let the range space
be

K = {X ∈ (C[0, 1])6}.

Note that the equation (11) has the trivial solution X=0 for all p and

FX(0, p0) = L−




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 −γ2 0 0 0

− sin(a− 2as) 0 0 0 0 0
cos(a− 2as) 0 0 0 0 0




,

where γ2 =
p0 + 8a3

2a
. Hence FX(0, p0)v = 0 implies





v1,s = v2

v2,s = v3

v3,s = v4

v4,s = −γ2v3

v5,s = − sin(a− 2as)v1

v6,s = cos(a− 2as)v1

which, in turn, yields
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v1 = −A1

γ2 cos γs− A2

γ2 sin γs− A3s + A4

v2 = A1

γ
sin γs− A2

γ
cos γs + A3

v3 = A1 cos γs + A2 sin γs

v4 = −A1γ sin γs + A2γ cos γs

v5 = A1[
sin(a− 2as) sin γs

γ(γ2 − 4a2)
− 2a cos(a− 2as) cos γs

γ2(γ2 − 4a2)
]

−A2[
sin(a− 2as) cos γs

γ(γ2 − 4a2)
+

2a cos(a− 2as) sin γs

γ2(γ2 − 4a2)
]

−A3[
s cos(a− 2as)

2a
+

sin(a− 2as)

4a2
]− A4

cos(a− 2as)

2a
+ A5

v6 = −A1[
cos(a− 2as) sin γs

γ(γ2 − 4a2)
+

2a sin(a− 2as) cos γs

γ2(γ2 − 4a2)
]

+A2[
cos(a− 2as) cos γs

γ(γ2 − 4a2)
− 2a sin(a− 2as) sin γs

γ2(γ2 − 4a2)
]

−A3[
s sin(a− 2as)

2a
− cos(a− 2as)

4a2
]− A4

sin(a− 2as)

2a
+ A6.

The boundary conditions are satisfied if



− 1

γ2
A1 +

τ

γ2
A2 − τA3 + A4 = 0

A1[−cos γ

γ2
+

τ sin γ

γ
]− A2[

sin γ

γ2
+

τ cos γ

γ
] + (1 + τ)A3 + A4 = 0

A1[− 2a cos a

γ2(γ2 − 4a2)
]− A2[

sin a

γ(γ2 − 4a2)
]− A3

sin a

4a2
− A4

cos a

2a
+ A5 = 0

A1[− 2a sin a

γ2(γ2 − 4a2)
] + A2[

cos a

γ(γ2 − 4a2)
] + A3

cos a

4a2
− A4

sin a

2a
+ A6 = 0

A1[− sin a sin γ

γ(γ2 − 4a2)
− 2a cos a cos γ

γ2(γ2 − 4a2)
] + A2[

sin a cos γ

γ(γ2 − 4a2)
− 2a cos a sin γ

γ2(γ2 − 4a2)
]

+A3[−cos a

2a
+

sin a

4a2
]− A4

cos a

2a
+ A5 = 0

A1[− cos a sin γ

γ(γ2 − 4a2)
+

2a sin a cos γ

γ2(γ2 − 4a2)
] + A2[

cos a cos γ

γ(γ2 − 4a2)
+

2a sin a sin γ

γ2(γ2 − 4a2)
]

+A3[
sin a

2a
+

cos a

4a2
] + A4

sin a

2a
+ A6 = 0.

Numerical investigations show that this system has one dimensional
null set at infinitely many isolated points p0 and it is known [1, p41] that
the null space of the adjoint problem has the same dimension. To make
sure that bifurcation happens at those points, it is enough to verify the
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bifurcation condition 3. This will be done just for one case bellow, but it
appears that the bifurcation condition is always satisfied possibly except
in some special cases.

The adjoint F ∗
X(0, p0) of FX(0, p0) is given [1, p40] by

F ∗
X(0, p0)Z = −LZ − fT

X(0, p0)Z = 0

with the boundary condition

PZ(0) + QZ(0) = 0

where

P =




τ 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0




Q =




0 0 0 0 0 0
τ −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0




.

If F ∗
X(0, p0)v

∗ = 0, then we have





v∗1,s = sin(a− 2as)v∗5 − cos(a− 2as)v∗6
v∗2,s = −v∗1
v∗3,s = −v∗2 + γ2v∗4
v∗4,s = −v∗3
v∗5,s = 0

v∗6,s = 0,

and hence,



Bifurcation theory for a circular arch subject to normal pressure 121

v∗ =




k1

2a
cos(a− 2as) +

k2

2a
sin(a− 2as) + k3

k1

4a2
sin(a− 2as)− k2

4a2
cos(a− 2as)− k3s + k4

k1

2a(γ2 − 4a2)
cos(a− 2as) +

k2

2a(γ2 − 4a2)
sin(a− 2as)

+
k3

γ2
+ k5γ sin γs− k6γ cos γs

k1

4a2(γ2 − 4a2)
sin(a− 2as)− k2

4a2(γ2 − 4a2)
cos(a− 2as)

−k3

γ2
s +

k4

γ2
+ k5 cos γs + k6 sin γs

k1

k2




.

In order that the boundary conditions of the adjoint problem are satis-
fied, ki’s, i = 1, 2, ..., 6, must satisfy the system:





k1[
2aτ cos a + sin a

4a2
] + k2[

2aτ sin a− cos a

4a2
] + τk3 + k4 = 0

k1[
2aτ cos a + sin a

4a2
] + k2[

−2aτ sin a + cos a

4a2
] + (1 + τ)k3 − k4 = 0

k1[
cos a

2a(γ2 − 4a2)
] + k2[

sin a

2a(γ2 − 4a2)
] + k3

1

γ2
− γk6 = 0

k1[
sin a

4a2(γ2 − 4a2)
] + k2[

− cos a

4a2(γ2 − 4a2)
] + k4

1

γ2
+ k5 = 0

k1[
cos a

2a(γ2−4a2)
] + k2[

− sin a
2a(γ2−4a2)

] + k3
1
γ2 + k5[γ sin γ]− γ cos γk6 = 0

k1[
− sin a

4a2(γ2−4a2)
] + k2[

− cos a
4a2(γ2−4a2)

]− 1
γ2 k3 + k4

1
γ2 + cos γk5 + sin γk6 = 0.

This system has nontrivial solution if and only if the system for A1, . . . , A6

has nontrivial solution [1, p41].

Using Mathematica we will now verify bifurcation condition for angle
a = π

2
and spring constant τ = 0. FX(0, p0) is non-invertible if γ =

9.42478, in which case we can choose
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Table 1. Buckling pressures

a/τ 0 .01 .1 1 10 100 ∞
π/12 42.24 40.463 31.9219 22.4848 20.7366 20.5484 20.5273
π/6 84.208 80.9883 63.4116 44.1913 40.6209 40.2364 40.1933
π/4 125.695 120.859 94.0955 64.3533 58.8019 58.2037 58.1368
π/3 166.634 160.18 123.734 82.2333 74.4316 73.5905 73.4964

5π/12 207.212 199.156 152.341 94.1487 86.6682 85.5374 85.4108
π/2 248.05 238.449 180.405 108.523 94.6812 93.1862 93.0188





A1 = 1 k1 = 1

A2 = −3312371257 k2 = 165.9995

A3 = 2.3116318× 10−11 k3 = − 2

π2

A4 = 0.0112579 k4 = − 1

π2

A5 = −4451197.619 k5 = −0.000142586

A6 = 0.0015886, k6 = 0.0707641.

The bifurcation coefficient is then

< v∗, FXp(0, p0)v >= −1.29416× 107.

Therefore, (0, p0) with p0 = 248.05021 is a bifurcation point in this case.
The buckling pressures for various values of the angle a and the spring

constants τ are given in Table 1.
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