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WEIGHTED LEBESGUE NORM INEQUALITIES
FOR CERTAIN CLASSES OF OPERATORS

Hi JA SonG

ABSTRACT. We describe the weight functions for which Hardy’s
inequality of nonincreasing functions is satisfied. Further we char-
acterize the pairs of weight functions (w,v) for which the Laplace
transform Lf(x) = fooo e~ %Y f(y)dy, with monotone function f, is
bounded from the weighted Lebesgue space LP(w) to L9(v).

1. Introduction

H.Heinig and V.Stepanov [3] characterized the weight functions w
and v for which the inequality

(/OOO fq($)w(w)dm)1/q <C (/OOO fp($)v(m)dm)1/p

holds for all nonnegative and nondecreasing functions f. And V.Ste-
panov [7] solved this problem for all nonnegative and nonincreasing
functions.

V.Stepanov [6] gave a criterion for the inequality

([ G [ rwanre@an <o [ [ rwaraa)

to hold for all nonnegative and nonincreasing functions f in the index
range 0 <p<qg<oo, g > 1.

J.Bradley [1] and B.Muckenhoupt [4] described the weight functions
w and v for which the Hardy’s inequality of the form

o Tw(x xl/q Oovax xl/p
([T s utain) ' < o[~ e
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holds.

In this paper we give an extensive presentation of results about the
weighted norm inequalities for certain classes of operators on monotone
functions.

We first establish usable necessary and sufficient conditions for the
inequality of the form

(/Ooo[Kf(x)]qw(a:)dx)l/q < C(/Ooo[Kf(x)]pv(x)dx)l/p,

where K is an integral operator With a nonnegative measurable kernel
k(z,y) defined by K f(z) = [;~ k (y)dy ,to hold for all nonnega-
tive and monotone functlons fin the 1ndex range 0 <p<1<gq.

Next we provide an alternative description of the weight functions
for which the Hardy operator Sf(x fo y)dy, with nonnegative
and nonincreasing function f, is bounded between weighted Lebesgue
spaces when 0 < p < 1, p < ¢. And then we consider the problem for
the reversed Hardy’s inequality.

Finally we pass to the discussion of the boundedness of the Laplace
transform between weighted Lebesgue spaces. By using proof due to
E. Myasnikov, L. Persson and V.Stepanov [5] we find the best constant
in the inequality

(/OOO(/OOO e f(y)dy)? w(z)dz)"/? < C (/OOO fp(:z:)v(a:)dx)l/p

for all nonnegative and monotone functions f when 0 < p < ¢q <
00, 0 < p < 1. In addition we deal with the related problem of the
converse inequality provided that 1 < p < ¢ < oo.

2. Definitions and Notations

In this section we present some of the definitions and notation to
be used. Throughout the paper all functions are assumed measurable
and nonnegative.

We shall use the notation f | (respectively f T ) to indicate that f
is nonincreasing (respectively nondecreasing ).

We say that a nonnegative function is a weight if it is locally inte-
grable. If w is a weight, the weighted Lebesgue space LP(w), 0 < p <
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0o, consists of those measurable functions f for which the quantity
17w = (/)P w(@)da)? is finte.

For f | we define f=1(¢t) = inf{s : f(s) < t} and similarly for f |
we define f~1(t) = inf{s: f(s) > t}.

The integral operator K is defined by K f(x fo f(y)dy,
x > 0, where k(z,y) is a nonnegative measurable kernel

The Hardy operator S is defined by Sf(z fo

The Laplace transform of f is defined by E f(z fo _xy fly

3. Results

The following two lemmas are needed in proving the theorems given
below.

LEMMA 1. Let —oo < a <b< oo and f >0 on (a,b) and let g be
continuous on (a,b).

(i) Suppose f 1 on (a,b) and g | on (a,b) with lim,_,- g(x) = 0.
Then for 0 < r < 1, we have

b b
[ s aowi=([ e a-g@p

If 1 < r < oo then the above inequality is reversed.
(ii) Suppose f | on (a,b) and g T on (a,b) with lim, .+ g(z) = 0.
Then for 0 < r <1, we have

/f ) dg(a /fr g @),

If 1 < r < oo then the above inequality is reversed.

Proof. (i) Note that
fa)dl-g(@)] =+ (@) @) @) d g @)

The hypothesis assures us that

0< f(2) g"( /fr g (8],
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Hence if 0 < 7 <1 (respectively 1 < r < oo) then

b
f@d[-g@)] < ([ F@d-gO) @) dl=g ()

(respectively >), and so integrating from a to b yields

b b
| t@adlg@) < ([ raa-g @

(respectively >).
(ii) Notice that

Fla)dg(a) = L(F7(@)g" (2) " ) dlg" (x)].

The hypothesis tells us that 0 < f"(z)g"(z) < [ f"(t)d[g" (t)]. Hence
if 0 < r <1 (respectively 1 <r < c0) then

Y 1
f(z)dg(z) < ;(/ frydlg" @) f () dg" (x)]
d (" e ey
=& raago)
(respectively >), and so integrating from a to b gives
b b
| t@dgo) < ([ @) alg @)
(respectively >). O
LEMMA 2. Let u > 0 be locally integrable on (0,00) and 0 < r <

0.
(i) fO< f7Tonl0,a) and 0 < a < oo then

/Oa T (z)u(z)dr = r/of(a) y’"l(/;l(y) u(z)dx) dy.
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(ii) If0 < f | on (0,00) then
o0 o0 )
/o fH(x)u(x)dr = T/o Y (/o u(x)dz)dy.

(iii) If0 < ¢ | on (0,00) then

/OOO%:) el )y = [ ([ e o) oo w)ule)ds

Proof. (i) Change the order of integration and use the fact that
f71(t) = inf{s: f(s) >t} to see that

/Oa fH(@)u(x)dz = /Oa(r /Of(x) y "l dy) u(x)da

f(a) a
= r/ y'"_l(/ u(x)dz) dy.
0 =)

(ii) Changing the order of integration and using the fact that
~1

f=H(t) =inf{s: f(s) < t}, we have
o0 )
frauis = [ (v [y dyuteyis
0 0 0
o0 F7 W)
= r/ yrl(/ u(x)dz)dy.
0 0
(iii) Changing the order of integration we obtain
/ ( / u(z)dz)e" (y)dy = / ( / o (y)dy)u(z)dz.
0 e(v) 0 pH(z)
Under the change of variable tr = z and integration by parts, we
produce
|t [ e @ ta = @ - [ e @)
o @+ [ dle(e)
= ¢ (a)a" +/ )sor(y)dy-
1 (z
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On the other hand
" o T .
/0 0 1<tr>dt:/0 o (s)d(s).

Therefore we have
[ ewir= [ i) - e @
) 0
This ensures the desired equality. 0

In the following we consider the characterization problem for the
weighted inequality || K f||q,0 < C || K f]|p,0, on monotone functions.

THEOREM 1. Let K be an integral operator with a nonnegative
kernel k(x,y) and 0 < p <1 < q. Then

0 (@) < o [P
holds for all 0 < f 1 on [0,00) if and only if

2)
([ seaditu@ain)' < o[ b
holds for all o > 0.

Proof. The necessary part follows by substituting f(y) = X{a,00)(¥),
a > 0, in the inequality (1).

To prove sufficiency, we use lemma 2(i), Minkowski’s inequality and
hypothesis (2) to deduce that

(/OOO[/OOO k(z,y) f(y)dy]? w(x) dm)1/q

- (/w[/w(/ool(t) k(r,y)dy)dt]qw(a:)dx)l/q
/ / / . (z,y)dy)w'/ 9 (x) dt]?dx )1/q
_/0 [/0 (/ L 2E )da] '/ dt

< C/OOO[/OOO(/:(t) k(z,y)dy)P v(x)dz]/Pdt = C1I.
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Again applying Minkowski’s inequality and lemma 2(i), we obtain

([ /f Ool(t) E, y)dy)P o(a)d 7 dt P

< [T e i
_ /O 7 /0 7 /f Ool(t) k() dy)dt}Pv () da

- [ Koot

Consequently we have the desired inequality (1). O

THEOREM 2. Let K be an integral operator with a nonnegative
kernel k(x,y) and 0 < p <1 < gq. Then

(3) (/OOO[Kf(@]qw(w)dw)”q < C(/OOO[Kf(x)]pv(x)dx)l/p

holds for all 0 < f | on [0,00) if and only if
(4)

(/OOO[/Oa k(a:,y)dy]qw(:z:)dx)l/q < C(/Ooo[/oa k(:l:,y)dy]pv(x)dg;)l/p

holds for all o > 0.

Proof. The necessity is proved by substituting f(y) = xj0,a](¥) , & >
0, in the inequality (3).

To prove sufficiency we apply lemma 2(ii), Minkowski’s inequality
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and hypothesis (4) to derive that

(/OOO[/OOO k(z, ) f (y)dy)4 w(x)dz) '
B (/OOO[/OOO%fl(t) k(z,y)dy) dt]qw(a:)dx)l/q
- (/Om[/w(/f_l(t) k}(m,y)dy)wl/q(x)dt]qd$)1/q

0 0
</ Tl / w( / T gy a)da]

<c /0 7 /0 7 /O T )yl da] e = G

Again using Minkowski’s inequality and lemma 2(ii), we have

r=([f T gy o(a)da) P at

<[ T ey 0 (@) e do

_ /Om[/ooo(/of_l(t) k(2. y)dy )dt P v(x)dz

= [ 1] ke sy v

Hence we end up with the desired inequality (3). O

COROLLARY 1. Let 0 <p <1 <gq. Then

71 s < e [T s
holds for all 0 < f | if and only if
(/0 (min{x,a})qw(x)dx)l/q < C’(/O (min{x,a})pv(x)dx)l/p

holds for every a > 0.

Proof. The proof follows immediately from theorem 2 by taking
k(z,y) = X[0,2](¥)- N
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Naturally the question arises : Does the above result remain valid
even in the index range 1 < p,q < oo ? This is answered by the

theorem stated below.

THEOREM 3. Let 1 < p < oo Then

5 ([ 1] soare@an <o 1] iwapowin

holds for all 0 < f | if and only if

(6) ( /0 oo(min{x,a})pw(x)dx)l/ e /O Oo(min{x,a})pv(x)dx)l/p

holds for every a > 0.

Proof. The necessity is proved by substituting f(y) = Xx(0,a)(¥),a >
0, in the inequality (5).

To prove sufficiency, we let a = ¢(y), where ¢ is a nonnegative
nonincreasing function on (0,00). Applying lemma 2(ii) and (iii) we
get

/OOO( /0 Oo(min{%a})pw(x)dx)dy
- /OOO( /0 Oo(min{:v, e(y)})Pw(x)dz)dy

-1 " (e 1 / Z) o (y)w(w)dz] dy

= Oo_lxxpwxa: - m_ls sP) — 2P Y\ w(z)dx
—/0 o () <>d+/0 [/090 (8)d(s?) — 2P0 (@)]w(z)d

- / [ / o (8)d(sP Y Jw(z)dz.
Also we see that

/Om(/()m(mi“{f”’ a})fo(z)dr)dy = /0 N /0 "o (8)d(sP) (@) de.
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It follows from hypothesis (6) that

/Ooo[/ow o~ (s)d(sP)Jw(x)dx < CP /Ow[/ow o (s)d(s)]v(x)dz.

Now taking ¢~ (s) = f(s)[s™ [ f(y)dy]P~*, we have

/ a(s?) /f —1/f (y)dyl?~d(s")
:/Opf /f dyplds—/f dyso—/f )dy)”

As a result we obtain the desired inequality (6). O

In the next theorem we characterize the boundedness of the Hardy
operator between weighted Lebesgue spaces.

THEOREM 4. Let S be the Hardy operator defined by Sf(z) =
fy f(y)dy, 0 <p<1andp<gq. Then

@ ([ sr@re@ o e
holds for all 0 < f | if and only if
(8) (/Ooo(min{fli,a})qw(x)da:) Ha < C’(/Oav(:zz)dx)l/p

holds for all o > 0.

Proof. The necessary part follows by substituting f(y) = x(0,a)(¥),
a > 0, in the inequality (7).
To prove sufficiency, we use lemma 2(ii) to see that

(/O""[/Ow F(y)dy) w(x)dx)"/
/ / Iy y)dyTw(x)dz)*/ 1

z(/0 [/O (/0 1(t)X[o,x](y)dy)dt]qw(x)daf)”q=I~
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Assume first that ¢ < 1. We invoke lemma 1(ii) to deduce that

oo ) oo )
/O< / Yo ()dy)dt < ( / ( / Ny () dy) (1)) /1

00 a0
= (/0 qtq_l(/o X[07x](y)dy)th)1/q.
It follows from hypothesis (8) that
= - oominx -1 Y (x)dz|td ™! 1/a
— (o [ 1 Guinge, T OD sl )
oo pfTH()
SC(q/O (/ o(a)dz)?/P 19 dr) /1
£ L
_c/ / v(z)dz) /P d(t9)) .

It takes another appeal to lemma 1(ii) to yields that

/Ooo(/of%t)v(x)dx)q/p d(t?) < (/Ow(/of%t)v(x)dx) djt]) "

Then in view of lemma 2(ii) we have

0 )
I< C(p/o tp—l(/o ( ) dt l/P / fp dx)l/p

which proves the desired inequality (7).
Now consider the case ¢ > 1. Setting g = f? and using lemma 2(ii)
we get

/ " )y = / " Yy 0.a (4)dy
0 0
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We take account of Minkowski’s inequality and hypothesis (8) to draw
that

(/Ow[/ox F(y)dy)@w(x)dz) Ve

— ([ / " o)) () dz)

/ / / ! X[0.01 () dy)w"/ % () dt] ?der)

S—/O (/0 - "(/0 l(t)X[o,x](y)dy)qw(x)dx)l/th

q

= l/ooo tclz_l(/Ooo(min{sc,g_l(t)})qw(a:)da:)l/th

q
1 [~ . g7 (t) "
<C- ta v(x)dz)Pdt = CJ.
q4Jo 0

By virtue of lemma 1(ii) and lemma 2(ii) we get

=[] " e o

< (/000(/091(15) v(:v)dgg)d[tp/q])l/p

—([ e </M) o(e)dr)dt) "
- (/0 g? U (z)v(z)dx) /P = / FP(2)v(z)dz) P,

Therefore we obtain the required inequality (7 O

THEOREM 5. Let 0 <p <1 and p < q. Then

9) / / F )yl (z)dz) /1 < O / 17 (@)o(@)da) /7
holds for all 0 < f T if and only if

a

(10) (/Oa[min{a —z,a — a}]%w(x)de)/T < C’(/ v(z)dx)/P

holds for every 0 < a < a.
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Proof. The necessity is proved by substituting f(y) = X[a,q(¥),
0 < a < a, in the inequality (9).
To prove sufficiency, we invoke lemma 2(i) to infer that

(/Oa[/: F(y)dy) w(z)dx)"/
_ (/0“[/0f(a)(/;l(t) X[m,a](y)dy)dt]qw(m)dx)l/q .

Assume first that ¢ < 1. An appeal to lemma 1(ii) yields that

f(a’) a f(a’) a 1/q
/ ( / Nio.al (9)dy)dt < ( / ( / Xio.al (9)dy)?l[t))
0 F=L(®) 0 1)

f(a) . a 1/q
—( / gt / Nio.al (9)dy)idt) 7.
0 f=1(®)

Using hypothesis (10), lemma 1(ii) and lemma 2(i) we draw

a rf(a) a 1/q
I< (q/o [/0 tq_l(/fl(t) Xfoa) (v)dy) 1t () dzx)
f(a) a 1/q
= <q/0 tq_l(/o [min{a — z,a — f~'(t)}]w(x)dz)dt) /
f(a) a
—1ca o(x)dz)/Pdt) "
S(q/o t (/f—l(t)() ) t)
fla)  pa
= C o(x)dz) /P dft] )1
([, v
fla) pa
v(@)da)d[t?] ) ?
(], )

f(a) Y
=C(p/ tp—l(/ v(z)dz)dt) " = / fP(z)v(x)dx) P,
0 F1)

This gives us the desired inequality (9).

< C(
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Next we deal with the case ¢ > 1. Putting g = f? and using lemma
) we obtain

/ F(y)dy = / 91 (5) X o0 ()l

| pe@ g
= _/ ta (/ X[z,a] (y)dy)dt
qJo g~ (t)

By virtue of Minkowski’s inequality and hypothesis (10), we get

(1] st
N 3(/0(1[/ g(a)t%_l( / :@) Xiesa] (v)dy)dt] 1o () dar)
AN " / | M) (@)t da) !
= é /OM( /0 £ /g L Xl )dy) T () dx) /7 dt

1 9(a) 1o [ . —1 q 1/q
—5/0 ta [/0 (min{a — z,a — g~ (t)})%w(z)dx]"/ 1dt

1 9@ | a
< C—/ tq_l(/ v(z)dz)/Pdt = CJ.
q.Jo g=1(1)

Lemma 1(ii) and lemma 2(i) step in to ensure that

g(a) ra
— o(x2)dz) P dlet/ 4
= [ e ran
g(a) ra
<([ ([ v e
_ (P 9@ £ ¢ 1/p
_(q/o t (/ 1(t)v(a:)dx)dt)

~([ SF@p@ = ([ @,

Hence we obtain the desired inequality (9). O

Next we treat the related problem of the converse Hardy’s inequality.



Weighted Lebesgue norm inequalities for certain classes of operators 151

THEOREM 6. Let S be the Hardy operator defined by Sf(z) =
Jy f(y)dy ,and 1 <p < gq . Then

(11) / FU(z)w(x)dz)t 1 < c(/oo[sf(x)]pv(x)dx)l/p

0

holds for all 0 < f | if and only if

(12) ( /O ) w(z)dz) ! < C( /0 Oo[min{x, a}Po(z)dz) "

holds for all a > 0.

Proof. The necessity is proved by substituting f(z) = x0,4)(7),
a > 0, in the inequality (11).

To prove sufficiency we let g = f¢. We invoke lemma 2(ii), lemma
1(ii) and hypothesis (12) to infer that

/ flz)w(x)dr = /000 g(x)w(x)dx

:/0 (/O O @)t < (/OOO(/OQl(t)w(a:)da:)sd[tp/q])q/p
=" (/w(/w[min{x g~ () }Pu()da) dir/ ) "

By virtue of lemma 1(ii) and lemma 2(ii), we have

0o g ()
/0 ( /0 X(0,2) ()dy )* d[t*/]

o0 gil(t)
< (/0 (/0 X(o,] (v)dy) d[t"/])"
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Combining the above inequalities we get

([ r@u@arr<cr [T fwdprowis

and so the inequality (11) holds. O

THEOREM 7. Let 1 < p < q. Then

(13) / f(w)w()d) T < C( /Oa[/: I (y)dy)Po(a)dz) /P

holds for all 0 < f 7 if and only if

(14) (/aw(:c)dx)l/q < C(/Oa[min{a —r,a — a}]pv(x)dx)l/p

holds for every 0 < o < a.

Proof. The necessary part follows by substituting f(z) = X|a,q(2),
0 < a < a, in the inequality (13).

To prove sufficiency we put g = f?. We apply lemma 2(i), lemma
1(ii) and hypothesis (14) to deduce that

/ fix da:—/ag(a:)w(x)da:
/ o / 1(t) z)dz)dt < ( /Og « / 1(t) x)dx) d[tp/q])Q/p

g(a)
< Cq(/o (/ min{a — z,a — gil(t)}]pv(x)da;)d[tp/q])Q/p

0

a pg(a) pra
— P[P 9y (2 a:q/p.
([ [ ety o)



Weighted Lebesgue norm inequalities for certain classes of operators 153

We make use of lemma 1(ii) and lemma 2(i) to obtain that

g(a) a
/0 (/g—l(t) X[z,a] (y)dy)pd[tp/q]
g(a)
/ /_1@ o (y)dy)d[t/ )"

1 g(a) . »
- / / X[a:,a](y)dy)dt)
q 1(t)

= (/O 9" V) X w0y () dy)? = (/a fy)dy)®

Combining the above inequalities we have

/ fi(z d:c)p/q<Cp/ / f(y)dy)Pv(x)dx

and hence the inequality (13) holds. 0J

In the theorem stated below we find usable necessary and suffi-
cient conditions for the boundedness of the Laplace transform between
weighted Lebesgue spaces.

THEOREM 8. Let L be the Laplace transform defined by Lf(z) =
fooo e~ f(y)dy, 0 < p<qg<ooand0<p<1. Then

(i) The inequality
1) ([ L@@ < o[ @
0 0
holds for all 0 < f T if and only if

(16) D = Sup(/ooo e_qmtx_qw(x)dx)l/q(/too v(z)de) P < co.

t>0

(ii) The inequality
a0 ([ @< c [ e
0 0
holds for all 0 < f | if and only if

(18) E = sup(/ooo(l - ewt)qmqw(m)d:l:)l/q(/ v(z)dz) P < .

t>0 0
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Proof. (i) The necessity is proved by substituting f(z) = Xt,00)(2),
t > 0, in the inequality (15).

To prove sufficiency we take a nondecreasing function f(z) in the
form f(z) = [, h, where h >0, supp h C (0, 00) and
(fy fP(z)v(z)dz)'/P < co. Using the identity

/Oy h(s)ds = (/pr(/ot h<5)d3)p_1h(t)dt)1/p,

we get

ci) = [ e[ sy
= pt/P /000 e ™ (/Oy(/ot h(s)ds)p_lh(t)dt)l/pdy =p'/P1.

An appeal to Minkowski’s inequality ensures that

IP = (/Ow[/oy(e—my)P(/ot h(s)ds)P~ h(t)dt] /P dy)®
< [T1f e[ s e ara

_ /0 7 /0 h(s)dsy( /t e TayPh(t)dt.
Hence

([ es@) i)
< v /OOO[ /0 T /O hs)ds) /t " eyt (o) h(t)d) da)

1
=prJ.

Q=

It takes another appeal to Minkowski’s inequality to reveal that

il </Ow[/0m(/0t h(s)dsV“‘l(/too e~ ™dy)Pw' (z)h(t)dt]? dz)*
= /OOO[/OOO(/Ot h(s)ds)@pl)q(/oo ™ *Ydy) w(x)h/P (t)dx]"/ dt

t

_ /O 7 /0 h(s)ds) | /0 " ety (1) da) U (1) dt.



Weighted Lebesgue norm inequalities for certain classes of operators 155

Combining the above inequalities with the hypothesis (16) we arrive
at

- 2)%w(z)dx) 1
</0 [£f (@) w()da)
< Dpl/P(/ (/ h(s )ds)p_l(/t v(x)dx)h(t)dt)l/p

_D/ / / s)ds)P " h(t)dtv(x)da) "
=0([ (| hdso@da) = D[ o)) .

0

(ii) The necessary part follows by substituting f(x) = x[,¢q(x),t > 0,
in the inequality (17).

To prove sufficiency we take a nondecreasing function f(x) in the
form f(z) = [ h, where h >0, supp h C (0,00) and

oo 1/p
</ fp(x)v(a;)dx) < 0.
0
The identity

/yoo h(s)ds = (/yoop(/too h(s)ds)p—lh(t)dt)up

leads us to have that

Lf(x)= / e Y /yooh
— pl/p/o e—l’y(/yoo(/too h(s)ds)P h(t)dt) " dy = p'/?1.

We apply Minkowski’s inequality to produce

- /0 | /y ey / " h(s)ds)P ()P dy)”

< [T e[ noas T i

_ /0 7 /t " h(s)ds)P /0 ey ().
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Therefore

([ 1es oo
<o (U meap ([ et @noan !

1

=prJ.

By another application of Minkowski’s inequality we obtain

P zzﬁzg gé 2?1 fws)ds)p—l(/g eV dy)Pwt (2)h(t)de)f do) ¢
< / | /20 ( /io (s >ds>“°p”"§o / e~ dy) () b9/ (£)dal 1t
_ /0 ( /t h(s)ds)P[ /0 (1 — =195~ 90(z)da]P/Th(t)dt.
Combining the above inequalities with the hypothesis (18) we get
( [ﬁ@)}%@)dj“; |
<Eo ([ ([ e ([ oo

_E/ / / s)ds)P ' h(t)dt v(z)da) '
—5([ ([ me)sro@in)” = B[ @) .

This completes the proof.

Finally we solve the similar problem for the reversed inequality.

THEOREM 9. Let L be the Laplace transform defined by Lf(z) =
fooo e ™ f(y)dy, and 1 <p < q < oo. Then

(i) The inequality

(19) / fU(2)w(x)dz)/1 < C(/Ooo[cf(x)]%(x)dx)l/p



Weighted Lebesgue norm inequalities for certain classes of operators 157

holds for all 0 < f T if and only if

(200 D= Sup(/too w(a:)dx)l/q(/ooo e PPy (2)dx) TP < 0.

t>o

(ii) The inequality

(21) / F9(2)w(z)dz)1 < C(/Ooo[ﬁf(fﬁ)]pv(x)dx)l/p

holds for all 0 < f | if and only if

(22) E = sup(/0 w(x)dw)l/q(/ooo(l — e TP Py (z)dr) THP < 0.

t>o0

Proof. (i) The necessity is proved by substituting f(z) = X,00)(2),
t > 0, in the inequality (19).

To prove sufficiency we take a nondecreasing function f(x) in the
form f(z) = [y h, where h > 0, supp h C (0, 00) and

(/Om[ﬁf(x)]pv(x)da:)l/p < 00.

Note that
([ s = ([ a1

Using first Minkowski’s inequality and then hypothesis (20) we get

= ([ s
< | ([ wasr i)

<o [T ([T emagru@psa o) = o
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An integration by parts shows that

=) [ ey oo

- [Troat[ T ey
= p/ooo v(x)dz /000(/:0 e~ dy)P~ et fP (1) dt

By another use of Minkowski’s inequality we get

( /0 o /t e maytemet () dr) 7

= ([T w [ e e asean
/[/ hP (s / —TY gy P Le ] P ds
= [ ne [ e aas
=p /P / / s)dsdy

zp‘l/”/o e f(y)dy =p VPLf ().

Therefore we have ~
J :/ [Lf(x)]Pv(x)dx
0

and so

([ srsuds e < D[ (s e
0
(ii) The necessary part follows by substituting f(x) = x[o,4(z),t > 0
in the inequality (21).
To prove sufficiency we take a nondecreasing function f(z) in the
form f(z) = [ h, where h > 0, supp h C (0, 00) and
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Notice that

/ Fi(s)w(s)ds)!/® = / [/ £))]7/Pw(s)ds)/? = I.

An appeal to Minkowski’s inequality in combination with hypothesis
(22) reveals that

r=([ 1] e
< [T wasprac )

<o | N / w( / ey u(a)de] d(— (1) = B

An integration by parts assures us that

=10 [ ([ eappo@ae s

/ fr(t)d] / / e~V dy)Po(x)dz]
:p/o e )dx/o (/Ot e~ Vdy)P~ et fP(t)dt.

It takes another appeal to Minkowski’s inequality to yield that

[ e

([ 1 n / e=1dy) "5 (=) ds P dt) "

< [T wer [ evappmrestantiva
=/Oo h(S)p‘”p(/s e~ "dy)ds
_p—l/p/ —wy/ s)ds dy

=p /P e Y dy = p~YPLf(x).
p / f)dy = p VP L ()
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Thus we get .
7= [ les@pia

and hence
1(s)w(s Sl/q x)|Po(x CL’l/p.
(/0 fi(s)w(s)ds) SE(/O [£f(@)]Po(z)dr)

This ends the proof. O
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