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SOME GEOMETRIC APPLICATIONS OF RESISTANT

LENGTH OF CURVE FAMILIES (I)

Bohyun Chung∗ and Wansoo Jung

Abstract. We introduce the resistant length and examine its prop-
erties. We also consider the geometric applications of resistant length
to the boundary behavior of analytic functions, conformal mappings
and derive the theorem in connection with the cluster sets, purely
geometric problems. The method of resistant length leads a simple
proofs of theorems. So it shows us the usefulness of the method of
resistant length.

1. Introduction

Throughout this paper, C will denote complex plane, D is a domain
in C, ∂D is a boundary of D, and cl(D) is a closure of D.

There is a physical interpretation of resistant length. Think of the
curve family Γ as representing a system of homogenous electric wires.
Then the resistant length λ(Γ) represents the resistance of Γ.

Using the concept of the resistant length, in [5], we established the
following theorems for analytic functions. A purely function-theoretic
proof of theorem A is difficult. The use of resistant length makes the
proof trivial.

Theorem 1.1. [5]. Let Q be a general quadrilateral of area M . Let
a be the length of the shortest arc in Q connecting one pair of opposite
sides. Let b be the length of the shortest arc in Q connecting the other
pair of sides. Then

a · b ≤ M.
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The following theorem 1.2 applies the resistant length to the analytic
function defined on the domain with a number of holes. So it shows us
the high usefulness of the method of resistant length.

Theorem 1.2. [5]. Let f(z) be a bounded single-valued analytic
function in the complement of E, where E is a totally disconnected
compact set of positive capacity in C. Then it is not the case that for
each z in E, except for those z in a set of capacity zero, there exist two
curves in the complement of E at z on which f(z) has the limits ω1 and
ω2, (ω1 6= ω2).

The purpose of this paper is to apply the resistant length of a curve
family in the complex plane to the boundary behavior of analytic func-
tions of a complex variable.

2. Resistant length

Let Γ be a family whose elements γ are locally rectifiable curves (sim-
ply, curves or arcs) in D, and let ρ(z) be a non-negative Borel measurable
function defined on C. Every curve γ has a well-defined

L(γ, ρ) =

∫

γ

ρ(z) |dz|, z = x + iy

which may be infinite, and D has a

A(D, ρ) =

∫∫

D

ρ(z)2 dx dy 6= 0,∞. (1)

In order to define an invariant which depends on the whole set Γ, we
introduce

L(Γ, ρ) = inf
γ∈Γ

L(γ, ρ),

where we agree that L(Γ, ρ) = ∞ in case Γ is empty.
To obtain a quantity that does not change when the weight func-

tion ρ is multiplied by a constant, we form the homogeneous expression
L(Γ, ρ)2

A(D, ρ)
.



Some geometric applications of resistant length 283

Definition 2.1. [1]. The resistant length(or extremal length) of Γ in
D is defined as

λ(Γ) = λD(Γ) = sup
ρ

L(Γ, ρ)2

A(D, ρ)
.

where ρ is subject to the condition 0 < A(D, ρ) < ∞, obviously 0 ≤
λ(Γ) ≤ ∞.

Remark 1. (i)[1] λD(Γ) depends only on Γ and not on D. Accord-
ingly, we shall simplify the notation to λ(Γ).

(ii)[9] Since almost every curve in C is rectifiable, the non-rectifiable
curves of a family Γ have no influence on the resistant length of Γ.
Accordingly, we shall simplify the terminology to curve or arc.

We introduce the following propositions which are frequently used in
our paper. The conformal invariance of resistant length is an immediate
consequence of the definition.

Proposition 2.2. [9]. (Conformal invariance of resistant length)
Let z∗ = f(z) be a 1-1 conformal mapping on D upon a domain D∗ and
Γ a family of curves on D, then

λ(Γ) = λ[f(Γ)].

Proposition 2.3. [1]. (Comparison principle of resistant length)
For two curve families Γ1, Γ2, if every γ2 ∈ Γ2 contains a γ1 ∈ Γ1, then

λ(Γ1) ≤ λ(Γ2).

Indeed, both resistant lengths can be evaluated with respect to the
same D. For any ρ in D it is clear that L(Γ2, ρ) ≥ L(Γ1, ρ). These
minimum lengths are compared with the same A(D, ρ).

Remark 2. (i)[1] Briefly, the set Γ2 of fewer or longer curves has
the larger resistant length. Observe that Γ2 ⊂ Γ1 implies Γ1 < Γ2.

(ii) The above Proposition 2.3 reflect the fact that systems of fewer
or longer wires have greater resistance (smaller conductance).

Proposition 2.4. [9]. Suppose there exist disjoint open sets Gn con-
taining the curves in Γn. If ∪nΓn ⊂ Γ, then

∑
n

1

λ(Γn)
≤ 1

λ(Γ)
.
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We discuss the following theorems which are frequently used in our
paper.

Theorem 2.5. Let R be a rectangle of sides a and b. Let Γ be the
family of arcs in R which joins the sides of length b. Then

λ(Γ) =
a

b
.

Proof. For any ρ(z), we have∫ a

0

ρ(z) dx ≥ L(Γ, ρ),

∫∫

R

ρ(z) dx dy ≥ b L(Γ, ρ)

Then, by the Schwarz inequality,

b2 [L(Γ, ρ)]2 ≤ ab

∫∫

R

ρ2 dx dy

= abA(R, ρ).

This proves λ(Γ) ≤ a

b
.

For ρ = 1, we have

L(Γ, 1) = a, A(R, 1) = ab.

Thus λ(Γ) ≥ a

b
.

Theorem 2.6. Let ∆ be the annulus ∆ = {z | a < |z| < b}. Let Γ
be the family of arcs in ∆ which joins the two contours. Then

λ(Γ) =
1

2π
log

b

a
.

Proof. For any ρ(z), we have
∫ b

a

ρ dr ≥ L(Γ, ρ),

∫∫

∆

ρ dr dθ ≥ 2πL(Γ, ρ)

Then, by the Schwarz inequality,

4π2 L(Γ, ρ)2 ≤ [

∫∫

∆

ρ dr dθ]2

≤ [

∫∫

∆

ρ2 1

r
dr dθ][

∫∫

∆

r dr dθ]

= [2π log
b

a
][

∫∫

∆

ρ2r dr dθ].
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This proves λ(Γ) ≤ 1
2π

log b
a
.

For ρ = 1
r
, we have

L(Γ,
1

r
) = log

b

a
, A(∆,

1

r
) = 2π log

b

a
.

Thus λ(Γ) ≥ 1
2π

log b
a
.

3. Applications

Using the following definitions and lemma, we have the theorem.

Definition 3.1. [11]. If every component of a set is a point, the set
is called totally disconnected.

For example, {1/n |n ∈ N} ∪ {0} is a totally disconnected compact
set.

Lemma 3.2. [7]. For any totally disconnected compact set E in C,
there exists a Jordan domain D such that the Jordan curve J bounding
D passes every point of E.

Definition 3.3. [9]. By an arbitrary function g we mean a (single-
valued) function whose domain is a subset of C and whose range is on the
Riemann sphere Ω. Let Λ be a curve at z0 ∈ cl(D), then the cluster set
of arbitrary function g at z0 along Λ, denoted by CΛ(g, z0), is defined to
be the set of all points ω ∈ Ω with the property that, for some sequence
of points {zn} on Λ for which

lim
n→∞

zn = z0, we have lim
n→∞

g(zn) = ω.

A value ω is called a cluster value of g at z0 along Λ. It follows readily
that CΛ(g, z0) is a nonempty closed subset of Ω.

Theorem 3.4. Let E be as in Theorem 1.2, and let D be a Jordan
domain such that the Jordan curve bounding D passes every point of E.
Let N(z0) denote a neighborhood of some point z0 in E, and u a some
harmonic function on D. If u is a bounded function in N(z0) ∩D, then
it is not the case that z0 in E, there exist two curves in D at z0 on which
u has the cluster values ω1 and ω2, (ω1 6= ω2).
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Proof. Since u is harmonic on Jordan domain D, there exists a v the
harmonic conjugate of u on D. Hence we let f(z) denote a function
satisfying

f(z) = exp(u + iv).

Then f(z) is a single-valued analytic function on D and f(z) is bounded
on N(z0)∩D. Hence applying Theorem 1.2 to f(z), we obtain the above
consequence for u(x, y) = Re f(z).

There are a number of geometric applications of resistant length. The
simplest example concerns the ring domain. In our discussion we will
need the following.

Definition 3.5. [1]. Let D be a simply connected domain in C. A
crosscut of D is a Jordan curve γ in D which in both directions tends
to a boundary point.

Lemma 3.6. [10]. Let R be a ring domain in C and let R0 and R1

denote the bounded component and unbounded component of Rc the
complement of R, respectively. Let ∂R0 and ∂R1 denote the two com-
ponents of the boundary of R, and let ΓR be the family of all curves in
R connecting ∂R0 and ∂R1. Then

λ(ΓR) = ∞
if and only if R0 consists of a single point.

Lemma 3.7. [3]. Let R, R0, R1 and ΓR be as in Lemma 3.6. We say
the closed curve γ in R separates R0 and R1 if γ has non-zero winding
number about the points of R0. Let ΓS be the family of all closed curves
in R which separates R0 and R1. Then

λ(ΓR) · λ(ΓS) = 1.

We say that λ(ΓS) is the conjugate resistant length of λ(ΓR).

Theorem 3.8. Let R, ∂R0 and ∂R1 be as in Lemma 3.6. Let a be
the length of the shortest arc in D connecting ∂R0 and ∂R1. Let b be
the length of the Jordan curve, ∂R0. Then

a · b ≤ S,

where S is the area of R.
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Proof. The purely geometric proof of this theorem is difficult. The use
of resistant length, however, makes the proof trivial.

Let ΓR and ΓS be as in Lemmas 3.6 and 3.7 respectively. Then by
Lemma 3.7,

λ(ΓR) · λ(ΓS) = 1.

On the other hand, we choose the non-negative Borel measurable
function ρ = 1, then λ(ΓR) and λ(ΓS) have the following lower bounds
respectively. That is,

a2

S
· b2

S
=

L(ΓR, 1)2

A(D, 1)
· L(ΓS, 1)2

A(D, 1)

≤ λ(ΓR) · λ(ΓS)

= 1.

and the theorem follows at once.

The following theorem concerns the general quadrilateral.

Theorem 3.9. Suppose that we have a set of n disjoint general
quadrilaterals Qk, for k = 1, 2, . . . , n, that are contained in the annulus
∆ = {z |r < |z| < R}, (0 < r < R, R 6= ∞) and that are bounded by
Jordan curves each of which has an arc, in common with each of the
circles {z | |z| = r} and {z | |z| = R}. ( The Qk can be regarded as strips
extending from the inner to the outer circle. ) If these domains Qk are
mapped onto rectangles Bk with sides equal respectively to ak and bk in
such a way that the arcs referred to are mapped into sides of lengths ak,
then

n∑

k=1

ak

bk

≤ 2π

log(R/r)
(2)

with equality holding only if the Qk are domains of the form {z | r <
|z| < R, φk < arg z < φk+1} completely filling the annulus.

Proof. The method of resistant length considered leads to a simple proof
of the inequality(2).

We can map an arbitrary general quadrilateral conformally onto a
rectangle, ([6, p.15]). Let w = fk(z) be 1-1 conformal mappings on Qk

upon Bk respectively. Let Γ be the family of arcs in ∆ which join the
two boundary circles, and let Γk be the family of arcs in Qk which join
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the two sides of Qk ⊂ ∂∆. Then by the conformal invariance of resistant
length(Proposition 2.2) and Theorem 2.5,

λ(Γk) = λ[fk(Γk)] =
bk

ak

. (3)

By the hypothesis, there exist disjoint open sets Qk(k = 1, 2, . . . , n)
containing Γk and ∪kΓk ⊂ Γ. Hence by Proposition 2.4,

n∑

k=1

1

λ(Γk)
≤ 1

λ(Γ)
. (4)

Therefore by Theorem 2.6, (3) and (4), we obtain (2).
The proof is complete.

Now, we will alternatively prove the well-known result by making use
of the method of resistant length. In particular, this method shortens the
length of proof significantly as we shall see by comparing the following
proof with that of Theorem 14.22 in [8].

Theorem 3.10. [8]. Let ∆(r, R) = {z | r < |z| < R}, (0 < r <
R, R 6= ∞). Then ∆1(r1, R1) and ∆2(r2, R2) are conformally equivalent
if and only if

R1

r1

=
R2

r2

(5)

Proof.(Method of resistant length) Since the proof of sufficient condi-
tions is trivial, we discuss the proof of necessary conditions. Let Γ∆ be
the family of arcs in ∆(r, R) which joins the two contours. Then by
Theorem 2.6,

λ(Γ∆) =
1

2π
log

R

r
. (6)

Suppose that ∆1(r1, R1) and ∆2(r2, R2) are conformally equivalent and
let f be a 1-1 conformal mapping on ∆1(r1, R1) upon ∆2(r2, R2). Then
by the conformal invariance of resistant length(proposition 2.2),

λ(Γ∆1) = λ[f(Γ∆1)] = λ(Γ∆2). (7)

Hence by (6), (7), we obtain (5).
The proof is now complete.
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