Physical disector를 이용한 신경세포 및 신경연접 수의 측정

Estimation of Number of Synapses on a Neuron in the Brain Using Physical Bisector Method

  • 이계주 (고려대학교 의과대학 해부학교실, 두뇌한국21의과학사업단) ;
  • 유임주 (고려대학교 의과대학 해부학교실, 두뇌한국21의과학사업단)
  • Lee, Kea-Joo (Department of Anatomy, Division of Brain Korea 21 Project for Biomedical Science, Korea University College of Medicine) ;
  • Rhyu, Im-Joo (Department of Anatomy, Division of Brain Korea 21 Project for Biomedical Science, Korea University College of Medicine)
  • 발행 : 2006.06.30

초록

신경연접은 다양한 생리적 또는 병적 상태에 반응하여 구조 및 수적 변화를 보이며, 신경연접의 밀도 변화는 신경세포의 활성 조절에 중요한 역할을 하는 것으로 알려져 있다. 따라서 특정 생리적 또는 병적 상태에서 신경연접의 밀도 변화를 명확히 이해하기 위해서는 정확한 정량방법을 이용한 밀도 측정이 필수적이다. 본 연구에서는 physical disector법을 이용하여 흰쥐 뇌의 치아이랑에 위치하는 과립신경세포의 신경연접 수를 측정하였으며, 이를 통해 physical disector의 방법적 정확성을 확인하고자 하였다. 성체 흰쥐를 관류고정한 후 치아이랑의 연속 절편을 얻어 통상적인 전자현미경 시료제작법을 통해 Epon 혼합용액에 포매하였다. Physical disector법을 이용한 밀도 분석 시 연속절편의 정렬, 비교 및 disector frame이 필요하므로 Reconstruct 프로그램을 사용하였다. 동물 당 40장의 $1{\mu}m$ 연속절편을 제작하여 과립신경세포체의 밀도를 측정하였으며, 15장의 80nm연속절편으로부터 bidirectional disector법을 이용하여 과립신경세포와 내측 관통로(medial perforant path) 간 신경 연접의 밀도를 분석하였다. 과립신경세포의 세포체와 신경연접은 각각 과립층과 분자층에 위치하기 때문에 하나의 신경세포가 가지는 신경연접의 수를 측정하기 위해서는 각 층의 부피를 고려하는 것이 요구된다. 따라서 과립층에 대한 분자층의 부피비율을 측정하였다. 실험결과, 흰쥐 치아이랑에 위치하는 하나의 과립세포당 약 6,500개의 신경연접의 존재한다는 사실을 확인하였으며, 이는 다른 연구자들의 결과와 유사하였다. 본 연구로부터 physical disector법은 특정 생리적 또는 병적 조건에서 나타나는 신경세포 및 신경연접의 수적 변화를 정확히 측정할 수 있는 유용한 정량방법임을 알 수 있었다. 향후 physical disector법을 이용하여 다양한 실험동물모델의 신경연접 변화를 분석하는 것은 신경연접의 형태적 가소성을 이해하는데 이바지할 것으로 생각된다.

The number and structure of synapses are dynamically changed in response to diverse physiological and pathological conditions. Since strength of synaptic transmission is closely related to the synaptic density on a neuron, both synaptogenesis and synapse loss may play important roles in controlling neuronal activity. Thus it is essential to estimate the number of synapses using an accurate quantitative method for better understanding of the numerical alteration of synapses under terrain experimental conditions. We applied physical disector principle to estimating the number of synapses per neuron in the dentate gyrus of adult mice. First, we measured the numerical density of granule cells using the physical disector principle. Second, the density of medial perforant path to granule cell synapses was estimated using the bidirectional physical disector. Then, the volume ratio of molecular layer to granule cell layer was measured. With these numerial values, we successfully calculated the number of synapses per neuron. Individual granule cells have approximately 6500 synapses in the dentate gyrus of adult mice $(6,545{\pm}330)$, which are comparable to those of other researchers. Our results showed that the estimation of synapse numbers per neuron using the physical disector principle would provide accurate and precise information on the numerical alteration of synapses in diverse physiological and pathological conditions. Following analyses of synapse numbers using this method will contribute to the better understanding of structural synaptic plasticity in a variety of experimental animal models.

키워드

참고문헌

  1. Abusaad I, MacKay D, Zhao J, Stanford P, Collier DA, Everall IP: Stereological estimation of the total number of neurons in the murine hippocampus using the optical disector. J Comp Neurol 408(4) : 560-566, 1999 https://doi.org/10.1002/(SICI)1096-9861(19990614)408:4<560::AID-CNE9>3.0.CO;2-P
  2. Andersen BB, Gundersen HJ, Pakkenberg B: Aging of the human cerebellum: a stereological study. J Comp Neurol 466(3) : 356-365, 2003 https://doi.org/10.1002/cne.10884
  3. Andersen BB, Pakkenberg B: Stereological quantitation in cerebella from people with schizophrenia. Br J Psychiatry 182 : 354-361, 2003 https://doi.org/10.1192/bjp.182.4.354
  4. Baloyannis SJ, Costa V, Baloyannis IS: Morphological alterations of the synapses in the locus coeruleus in Parkinson's disease. J Neurol Sci, 2006
  5. Beaulieu C, Colonnier M: Number and size of neurons and synapses in the motor cortex of cats raised in different environmental complexities. J Comp Neurol 289(1) : 178-181, 1989 https://doi.org/10.1002/cne.902890115
  6. Bedi KS: Effects of undernutrition during early life on granule cell numbers in the rat dentate gyrus. J Comp Neurol 311(3) : 425-433, 1991 https://doi.org/10.1002/cne.903110311
  7. Bjugn R, Gundersen HJ: Estimate of the total number of neurons and glial and endothelial cells in the rat spinal cord by means of the optical disector. J Comp Neurol 328(3) : 406-414, 1993 https://doi.org/10.1002/cne.903280307
  8. Black JE, Isaacs KR, Anderson BJ, Alcantara AA, Greenough WT: Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci U S A 87(14) : 5568-5572, 1990
  9. Bolender RP, Charleston JS: Software for counting cells and estimating structural volumes with the optical disector and fractionator. Microsc Res Tech 25(4) : 314-324, 1993 https://doi.org/10.1002/jemt.1070250408
  10. Braendgaard H, Gundersen HJ: The impact of recent stereological advances on quantitative studies of the nervous system. J Neurosci Methods 18(1-2) : 39-78, 1986 https://doi.org/10.1016/0165-0270(86)90110-X
  11. Briones TL, Suh E, Jozsa L, Rogozinska M, Woods J, Wadowska M: Changes in number of synapses and mitochondria in presynaptic terminals in the dentate gyrus following cerebral ischemia and rehabilitation training. Brain Res 1033(1) : 51-57, 2005 https://doi.org/10.1016/j.brainres.2004.11.017
  12. Coleman PD, Flood DG, West MJ: Volumes of the components of the hippocampus in the aging F344 rat. J Comp Neurol 266(2) : 300-306, 1987 https://doi.org/10.1002/cne.902660213
  13. Geinisman Y, Disterhoft JF, Gundersen HJ, McEchron MD, Persina IS, Power JM, van der Zee EA, West MJ: Remodeling of hippocampal synapses after hippocampusdependent associative learning. J Comp Neurol 417(1) : 49-59, 2000 https://doi.org/10.1002/(SICI)1096-9861(20000131)417:1<49::AID-CNE4>3.0.CO;2-3
  14. Geinisman Y, Gundersen HJ, van der Zee E, West MJ: Unbiased stereological estimation of the total number of synapses in a brain region. J Neurocytol 25(12) : 805-819, 1996 https://doi.org/10.1007/BF02284843
  15. Gundersen HJ: Stereology: the fast lane between neuroanatomy and brain function--or still only a tightrope? Acta Neurol Scand Suppl 137 : 8-13, 1992
  16. Gundersen HJ, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N, Moller A, Nielsen K, Nyengaard JR, Pakkenberg B, et al.: The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. Apmis 96(10) : 857-881, 1988 https://doi.org/10.1111/j.1699-0463.1988.tb00954.x
  17. Kim HT, Kim IH, Lee KJ, Lee JR, Park SK, Chun YH, Kim H, Rhyu IJ: Specific plasticity of parallel fiber/Purkinje cell spine synapses by motor skill learning. Neuroreport 13(13) : 1607-1610, 2002 https://doi.org/10.1097/00001756-200209160-00007
  18. Kleim JA, Swain RA, Armstrong KA, Napper RM, Jones TA, Greenough WT: Selective synaptic plasticity within the cerebellar cortex following complex motor skill learning. Neurobiol Learn Mem 69(3) : 274-289, 1998 https://doi.org/10.1006/nlme.1998.3827
  19. Kretz O, Fester L, Wehrenberg U, Zhou L, Brauckmann S, Zhao S, Prange-Kiel J, Naumann T, Jarry H, Frotscher M, Rune GM: Hippocampal synapses depend on hippocampal estrogen synthesis. J Neurosci 24(26) : 5913-5921, 2004 https://doi.org/10.1523/JNEUROSCI.5186-03.2004
  20. Miki T, Satriotomo I, Li HP, Matsumoto Y, Gu H, Yokoyama T, Lee KY, Bedi KS, Takeuchi Y: Application of the physical disector to the central nervous system: estimation of the total number of neurons in subdivisions of the rat hippocampus. Anat Sci Int 80(3) : 153-162, 2005 https://doi.org/10.1111/j.1447-073x.2005.00121.x
  21. Mura A, Murphy CA, Feldon J, Jongen-Relo AL: The use of stereological counting methods to assess immediate early gene immunoreactivity. Brain Res 1009(1-2) : 120-128, 2004 https://doi.org/10.1016/j.brainres.2003.09.086
  22. O'Kusky JR, Ye P, D'Ercole AJ: Insulin-like growth factor-I promotes neurogenesis and synaptogenesis in the hippocampal dentate gyrus during postnatal development. J Neurosci 20(22) : 8435-8442, 2000 https://doi.org/10.1523/JNEUROSCI.20-22-08435.2000
  23. Pilegaard K, Ladefoged O: Total number of astrocytes in the molecular layer of the dentate gyrus of rats at different ages. Anal Quant Cytol Histol 18(4) : 279-285, 1996
  24. Scheff SW, Price DA: Synapse loss in the temporal lobe in Alzheimer's disease. Ann Neurol 33(2) : 190-199, 1993 https://doi.org/10.1002/ana.410330209
  25. Seyer-Hansen K, Gundersen HJ, Osterby R: Stereology of the rat kidney during compensatory renal hypertrophy. Acta Pathol Microbiol Immunol Scand [A] 93(1) : 9-12, 1985
  26. Simic G, Kostovic I, Winblad B, Bogdanovic N: Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer's disease. J Comp Neurol 379(4) : 482-494, 1997 https://doi.org/10.1002/(SICI)1096-9861(19970324)379:4<482::AID-CNE2>3.0.CO;2-Z
  27. Sterio DC: The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134(Pt 2) : 127-136, 1984 https://doi.org/10.1111/j.1365-2818.1984.tb02501.x
  28. Stewart MG, Harrison E, Rusakov DA, Richter-Levin G, Maroun M: Re-structuring of synapses 24 hours after induction of long-term potentiation in the dentate gyrus of the rat hippocampus in vivo. Neuroscience 100(2) : 221-227, 2000 https://doi.org/10.1016/S0306-4522(00)00295-5
  29. Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D: LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402(6760) : 421-425, 1999 https://doi.org/10.1038/46574
  30. West MJ: Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends Neurosci 22(2) : 51-61, 1999 https://doi.org/10.1016/S0166-2236(98)01362-9
  31. Zhang W, Benson DL: Development and molecular organization of dendritic spines and their synapses. Hippocampus 10(5) : 512-526, 2000 https://doi.org/10.1002/1098-1063(2000)10:5<512::AID-HIPO2>3.0.CO;2-M