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Implicit Numerical Integration of Two-surface Plasticity Model
for Coarse-grained Soils
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Abstract

The successful performance of any numerical geotechnical simulation depends on the accuracy and efficiency
of the numerical implementation of constitutive model used to simulate the stress-strain (constitutive) response of
the soil. The corner stone of the numerical implementation of constitutive models is the numerical integratioh of
the incremental form of soil-plasticity constitutive equations over a discrete sequence of time steps. In this paper
a well known two-surface soil plasticity model is implemented using a generalized implicit return mapping algorithm
to arbitrary convex yield surfaces referred to as the Closest-Point-Projection method (CPPM). The two-surface model
describes the nonlinear behavior of coarse-grained materials by incorporating a bounding surface concept together
with isotropic and kinematic hardening as well as fabric formulation to account for the effect of fabric formation
on the unloading response. In the course of investigating the performance of the CPPM integration method, it is

proven that the algorithm is an accurate, robust, and efficient integration technique useful in finite element contexts.

do
It is also shown that the algorithm produces a consistent tangent operator 5 during the iterative process with

quadratic convergence rate of the global iteration process.
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1. Introduction

There has been increased use of numerical analysis in
geotechnical engineering in both research and practice.
Among all possible numerical schemes, the finite element
analysis has proven to be an efficient method for the
analysis of geotechnical applications. Recently, the wide
use of the finite element analysis has led the demand on
efficient and robust implementations of constitutive equa-
tions. The comer stone of the numerical implementation
of constitutive models is the numerical integration of the
incremental form of soil-plasticity constitutive equations
over a discrete sequence of time steps. In the context of
finite elements, the integration of discretized constitutive
relations is commonly carried out over Gauss quadrature
points where the evolution of the initial boundary value
problem that defines the inelastic material behavior is
enforced locally as a system of differential équations. As
a consequence, three factors have a significant effect on

-the accuracy, cost, and convergence rate of global finite
eiement solutions: a) precision with which the constitutive
relations are integrated, b) efficiency of the algorithm, and
¢) structure of the constitutive stiffness matrix.

The most widely-used integration schemes for the
solution of constitutive rate equations fall within the
category of elastic predictor-plastic corrector methods
(Ortiz et al. 1983), where a purely elastic trial state is
followed by a plastic corrector stage (return mapping
algorithm). The purpose of the latter is to enforce con-
sistency at the end of the time step in a manner consistent
with a prescribed loading function énd flow rule. For
simple classical plasticity models, such as J2-plasticity,
the return path can be determined in closed-form. For
complex models that account for pressure sensitive,
non-linear work hardening/softening, non-linear elasticity,
or complicated yield surfaces, it becomes necessary to
compute the return path in an iterative fashion.

Return mapping algorithms are further grouped into
explicit and implicit schemes depending on the method
used to evaluate the unknown variables in a discrete time
space. The former involves only function evaluations and

no system of equations needs to be solved to update the
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state of the material. The cutting plane method, originally
proposed by Ortiz and Simo (1986), falls within this class.
The main drawback of explicit methods is that relatively
large time steps deteriorate the numerical stability.
However, the lack of need for an iterative scheme is an
attractive factor (Simo 1998; Simo and Hughes 1998). On
the contrary, implicit methods are more stable but require
the solution of systems of nonlinear equations usually
through iterative processes. These methods are commonly
used in cases where large time steps are expected. The
generalized implicit return mapping algorithm to arbitrary
convex yield surfaces was introduced by Simo and Taylor
(1986) and Simo and Hughes (1987) and since then has
been referred to as the Closest-Point-Projection method
(CPPM). The CPPM boils down to the systematic appli-
cation of Newton’s method to a system of nonlinear
equations to compute the closest-point projection from a
trial state onto a convex yield surface. The fact that it
provides an exact linearization of the algorithm leading
to the notion of the algorithmic elastoplastic consistent
moduli, together with its robustness from an implicit point
of view, have motivated a number of recent studies (Borja
and Lee 1990; Boxja 1991; Hashash and Whittle 1992;-
Jeremic and Sture 1997; Macari et al. 1997; Borja et al.
2001; Manzari and Prachathananukit (2001); Jacobsson
and Runesson 2002).

The objective of this paper is to ﬁnplement a well
lw_moWn two-surface soil plast’icity miodel in the context of
the Cloéest—Point-Projection method. The two-surface
model describes nonlinear elastic behavior of granular
materials by incorporating a hypo-elastic formulation at
which a direct incremental stress-strain relation using
power series is assumed. To account for irreversible
response, the critical state two-surface plasticity model
was formulated based on classical plasticity theory for
cohesionless soils and includes an associative flow rule
for the deviatoric component and a nonassociative flow
rule for the volumetric part. The model includes isotropic
and kinematic hardening as well as fabric formulation to
account for the effect of fabric formation on unloading
responses. It has a capability to reproduce complex soil

behavior subjected to cyclic loading condition.
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The following sections introduce the two-surface soil
plasticity model proposed by Manzari-Dafalias (1997) and
the implementation of the model using return mapping
algorithm (Closest-Point-Projection method). Then, in
order to investigate performance of the model within
CPPM integration method, model simulations of stress-strain
behavior for coarse-grained soils subjected to realistic
stress paths encountered in soil testing are presented. The
accuracy and efficiency of the integration technique in
finite -element: context .are also investigated.

In the following, the compressive stress and strain are
positive and boldface are used to denote tensors. The
representations of stress and strain tensors are summarized
in Table 1.

2. Brief Description of the Manzari-Dafalias
Two-surface Soil Model

The model formulation proposed by Manzari and
Dafalias (1997) combines the concept of bounding surface,
where the evolution of plastic modulus is obtained based
on the distance from the current state to an image state
in the bounding surface, and the influence of the state

parameter ¥ =€—€, on the volumetric response within

critical state concepts for cohesionless soils, where e and
ecs are the void ratio and the critical void ratio, respec-
tively. The bounding surface formulation takes place in
a deviatoric stress-ratio space and the state parameter ¥
is used to define the volumetric response of cohesionless
soils. A distinct feature of the model is its capabilities
to describe hardening and softening response based on
its state and drainage condition. Moreover, using a single
set of model parameters the model captures the response
of granular materials with different void ratios and
confining pressures. More details of the model can be
found in Manzari and Dafalias (1997), Manzari and
Prachathananukit (2001), and Choi (2004). A brief des-

cription on the model follows.

2.1 Yield Criteria in 3-D Stress Space and Flow Rule

The yield surface is expressed in stress space by a direct
generalization of the wedge-type shape. Using a circular
cone shape, with apex at the origin, the following

expression results

f(o,a,m)= I[r[[ - \[gmp M
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where,

r=s-—pa Q)

""" =~Tr 3

and the deviatoric back-stress ratio tensor « and stress
ratio scalar m describe the kinematic and the isotropic
evolution of the yield surface, respectively. Its projection
onto a deviatoric stress ratio, S;/ P where i=1,2,3, plane
is a circular-like shape as shown in Fig. 1. The yield

function represented by Eqn. 1 plots as a circular cone

2
centered at o with radius of \[;m and apex at the origin

As/p

sz/p o S;/P

Fig‘ 1. Schematic illustration of yield, bounding, critical, and dilatancy
surfaces in stress-ratio deviatoric plane, and ‘image’

back-stress ratios @5, @5, and @ as related to @, n,
and Lode angle @ (after Manzari and Dafalias, 1997).

A
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f(o,a,m)=0E,

>

Fig. 2. Schematic view of circular vield surface in three dimensional
principal stress space.
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as shown in Fig, 2. Plastically admissible stress states,

o, are restrained to a convex set defined by

Eo:={a,a,m)eSxR’”lf(c,a,m)SO} @)

By denoting E, =int(E,)UCE,, the pure elastic
domain int(E,) and the elastic boundary OE, are given

by

int(E, ):= {(o, a,m)e SxR"|f(o, a,m)< 0} )

OE, = {(o, o, m)eSx R”’]f(o, o, m)= 0} ©)

Since Eqn. 1 defines an open elastic set along the
hydrostatic axis, it implies that pure volumetric yielding
does not occur. _

The normal to the yield function L=20f/06 and the

plastic flow direction m in stress space are given by

L=n- —;:N 1 )
m=n-+ %Dl ®)
where
ne X
Il ©)

. 2
N—a.n+\/;m (10)

D = dilatancy coefficient

1 = 2™ order identity tensor

and n represents the unit deviatoric stress-ratio tensor, i.e.,
n:n=1 and tr(n)= 0. While L denotes the normal to
the yield surface (Eqn. 7), m defines the direction of'
plastic strain (Eqn. 8). The common component n in Eqns.
7 and 8 indicates that an associative flow rule is used
in a deviatoric stress-ratio space. In contrast, the
volumetric part of the flow rule is not associative, since
in general -N=D. The evolution of plastic strains, £,

referred as “flow rule” is defined by



¢=ym (11)

Where 720 is a nonnegative parameter, here referred

as the consistency parameter.

2.2 Critical, Dilatancy, and Bounding Surfaces in 3
— D Stress Space

The critical, dilatancy, and bounding surfaces are
described in a general 3 —D space using Lode angle 6
as shown in Fig. 1. Lode angle 6 can be defined in terms

of deviatoric stress invariants. That is,

os36’=§£—l]3—37
2 J; (12)

where, J, and J; are the second and third invariants of

P
the deviatoric stress tensor | ~ p. With the help of Lode
angle the functions for the surfaces can be generalized

in a 3-dimensional space by means of a function g(0,
¢) proposed by Willam and Warnke (Chen 1994) in which

2(1~c*)cos(@ -7z /3)-(1- 20)J4(l ~c?)cos* (@ -7 /3)+5c* ~4c
4(1-c*)cos} (@ - /3) + (1~ 2c)?

g,0)=
13)

where ¢ controls the shape of the bounding, critical, and
dilation surfaces in the deviatoric space.

The locus of the bounding and dilatancy surfaces
continuously change with the value of the state parameter,
y, while the critical surface remains fixed. Their analytical
description is obtained by three so-called “image™ back-
stress ratio tensors, (II;, oy and a;, where superscripts
b, ¢, and d represent the values associated with bounding,
critical, and dilatancy surfaces, respectively, and 6 indi-

cates their dependence on Lode angle.

a 2 a.
oy = \/;agn, (a = b,c,d) (14)

Because n is defined from the given stress state, it
remains to obtain the scalar-valued @; (notice the
difference between the tensor-valued @ of the left-hand

side and the scalar-valued &; of the right-hand side in

Eqn. 14). Now, with the help of the state variable y and

m, 0, is defined as

at =@M, +g@c)K(y)-m (s

of = g(0,0)M, + g(0,c)k’y —m (16)

a5 = g(0.OM, ~m an
where,

c=M,/M,, c,=kIk, c,=ki/k’ (18)

and Macauley bracket ( ) defines the operation (W) =y
if ¥>0 and =0 if ¥ <0, In above equations M, is
the critical state stress ratio and kf and k¢ are model
surface parameters in compression side. The values with
subscript e define the surface parameters in extension side.
Eqgns. 15~18 fully specify the bounding, dilatancy, and
critical surfaces associated with the back-stress ratio o

in a stress-ratio space.

2.3 Isotropic Hardening

The opening of the wedge like yield function depends
on the hardening parameter m. The evolution of m can

be expressed by
m=yc,(l+e)D=ym (19)
where €, is a positive material parameter and € is an
initial void ratio.
2.4 Kinematic Hardening

The evolution of the back-stress ratio a is assumed to

be dependent on the distance between the bounding back

stress ratio and current back stress ratio, i.e., b= G’; -G,
Hence, the evolution of the kinematic hardening is given
by

a=yha;-a)=yq 20)

where 4 is a positive scalar-valued function. The depen-

dence of  on the distance between o and @ satisfies

Implicit Numerical Integration of Two-surface Plasticity Model for Coarse-grained Soils 49



the bounding surface plasticity concept in that the plastic
evolution is associated with such distance. The function
h is adopted from the original work by Dafalias and
Herrmann (1986). That is,

b :n|

h=hy—
by =[b:n| 1)

where %, is a positive constant and bref is a reference

scalar distance given by

0|2,
b =23 6o}

Basically, Eqn. 22 denotes the diameter of the bounding
surface.

2.5 Dilatancy Coefficient D

Based on Rowe’s stress-dilatancy theory and its invariant
form suggested by Nova and Wood (1979), it is assumed
that the dilatancy coefficient D is proportional to the
difference between the dilatancy back stress ratio and

current back stress ratio, i.e., d =@ —@ such as
D=A(a;’—a):n=Ad:n 23)

where 4 is a state dependent coefficient associated with

an evolution of fabric formation.

2.6 Fabric Tensor F

In order to account for the effect of fabric formation
on the unloading response, it is assumed that the variation
of 4 in Eqn. 23 depends on an evolving fabric tensor
F. That is,

4= 4(1+(F:n)) (24)

where 4, is a positive constant. The evolution of the fabric
tensor, F, is related to dilatancy and its effect is
manifested by an increase in the dilatancy parameter 4

upon loading reversal (i.e., F:n>0) enhancing a
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contractive response (Dafalias and Manzari 1999). In this
study, the evolution of F is related only to accumulated

plastic dilation. That is,
F= —<)/>Cf<— D)(men + F) (25)

where the positive material constants C; and Fua control
the rate of change and maximum value of fabric tensor,

respectively. The Macauley bracket defines the operation

(~D)=-D if -D>0 and (-D)=0 if —p<o.

2.7 Hypoelasticity

Using the fact that an elastic stress-strain relation can
be decoupled into deviatoric (distortional) and volumetric
parts, Hooke’s law can be expressed in terms of deviatoric
and volumetric strains. This leads to the following

relations:

=S

T 2G (26)
. 1(6)
=3k @7)

where ¢° and é‘f are the deviatoric and volumetric elastic
strain increments, respectively, and G and K are shear
and bulk modulus. Several researchers have studied the
nonlinear characteristics of the parameters X and G.
Hardin and Drenevich (1972) showed that there are three
important parameters which affect the shear modulus:
strain amplitude, effective mean principal stress, and void

ratio. Thus, the shear modulus may be expressed by

b
G= Go( P J
Patm (28)

where Pam is the atmospheric pressure, b is a material

constant, and Gy 1s a reference shear modulus for 2 = Pam.
The bulk modulus, X, is not independent of G. For the

case of isotropic linear elastic material, it can be related
_2(+v)
3(1-2v)

to G using Poisson’s ratio, v, as



2.8 The critical state line

The critical state line for this model is given by a

straight line in e—1np space. That is,

—Aln-2
pref (29)

ecs = ecs ref

where € is the critical void ratio corresponding to mean
effective stress p, esrer is the reference critical void ratio

at Pry, and 4 is the slope of €—Inp curve.

3. A Implicit Integration of the Two-surface
Soil Plasticity Model

In this section, the equations that characterize the
elastoplastic model described in the previous section are
integrated using a implicit integration technique, specifically
the CPPM method. This section follows the early work
published by Manzari and Prachathananukit (2001), but
the resulting non-linear system of equations is different
from that proposed in Manzari and Prachathananukit
(2001) in that the current work reduces the size of the
system of equations by recognizing the dependence between
stress and strain quantities. In what follows, the CPPM

model specific procedure is presented.

3.1 Model Discretization

Using the notion of the implicit backward Euler
method, the evolution laws are discretized for elastic strain

e°, plastic internal variables o and m, and fabric tensor F.

e’ =€ +Ae— Ay m(o,0,m) 30)
a=a,+Ayd @1
m=m,+Aym (32)
F=F,-AyF (33)

1 —
where ™ =1 +30..1(Eqn. 30), @=h,.b,,., (Eqn. 31),
m=c, 1+ eo)Dnn(Equ 32), and F= Cf(“ Dn+1>(ann+1 +F)
(Eqn. 33). It is implied in these equations that

4 € —_— — pu— .
g€ =g ,0=0a_,m=m,_, and F=F,, The discrete

form of the Kuhn-Tucker conditions is defined as

f(o,a,m,F)<0 (34)

Ay =20 (35)
and the consistency condition results in

Ay f(e,0,m,F)<0 (36)

3.2 Operator Split

Many implicit integration algorithms use an elastic-
predictor plastic-corrector operator splitting approach (Oritz
and Simo 1986), where a purely elastic trial (predictor)
step is followed by a plastic (cormrector) step. During the
elastic predictor phase an approximate updated stress/strain
for a given time/load step is assumed to be fully elastic.
During the plastic corrector phase consistency is enforced
at the end of the time step in a manner consistent with
the discretized forms of the rate equations of plasticity
(Simo and Hughes 1998). In the following discussion, the
model is implemented based on the concept of operator

splitting.

Elastic predictor
The first estimate of the updated state of stress and

plastic internal variables is assumed to be the trial state

defined as

A 7tria1 - 0 (3 7)

elriaI — sn + As (38)
Gm‘al - Ctrial . se"i”I (39)
am’al - (l,, (40)
mrriaI — m,, (41)
Ftrial — F,, ( 4 2)
ftrial = f(o_trial,atrial’ mtrial’Ftrial) (43)

The trial elastic modulus tensor C™ is obtained using
the hypoelasticity. That is,
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1

N -b
P =[ P04 K (1 b) Kl=0) Ase)}

D am (44)
Ktrial — p”'ial - pn
tr(Ag) (45)
Gmal 3 (1 2V) truzl
2 (1+v) (46)
Ko s
where b is a material constant. In case As_)O’K_)pbatmp "

Plastic_corrector

If f(6™,a™ m™ F"™)>0, the plastic corrector
step is triggered by enforcing the discretized Kuhn-Tucker
conditions (Eqns. 34 and 35) and consistency requirement
(Eqn. 36) together with the flow and hardening rules. For
the Manzari-Dafalias model these eqﬁations are given in
discrete form by Eqns. 30~33. In compact form these
equations can be represented by an array of generalized
residuals R and an array of generalized unknowns 8. That

is,

R, e —e —Ag+Aym 8, &

R, a-o,-Aya 3, o
R={R }=3 m-m,—Aym , 83=48t={m

R, F-F, +AyF 5, F

R, Il 2mp &) lay) GD

The elements, Ry, Ry, Ry, 61, 62, and 84 in the arrays
R and § respectively are symmetric 2™ order tensors. Rs,
Rs, 63, and &5 are scalars. Setting R = 0 produces a system
of twenty nonlinear equations and twenty unknowns repre-
senting the elastic strain, plastic internal variables, and
consistency parameters. This also includes the algebraic

evaluation of ihe variables

D=A(d:n) (48)
4= 4,1+(F:n)) (49)
_b:n]
h=
by bl (50)
b ref 2 (5 1)
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b= agn o (52)

d= agn a (53)

Stress update algorithm

By setting R=0 in Eqn. 47, the unknowns are
obtained effectively by using a Newton’s iterative

algorithm. The method consists of iterating over the

expressions
kek+1, —JA8*=R, 8" =8"+A8" (59
Jt = oR*
where ¥ T zg* is the consistent Jacobian which, in this

case, takes .the explicit form of

[ om om ,om Om
I+Ay¥ Ay&— Aya—m- Aﬁ?— m
o 5 5 —
-Ay; I——Ar;; —Ay;i;—_ 0 - -a
Zd ] —
Fr= -Ay; —Arg I—Ayb—m— —Aya; -
oF oF oF . F o5
Ay— Ay & Ay I+A7§; F
2Gn—K(‘Em+a:n)l -pn —\Ep 0 0 (55)

During the iteration procedure the elastic modulus C
is updated using the hypoelastic. relations given by

1
trig - K,(1-b o€ e 16
P = l: pn(l b, _(jzf” __) [tr(As )- tr(As,,)]:l (56)

mal
trial = - P n .
tr(As) tr(Ag)) 57

The iteration procedure is considered to have converged
to a solution when |R|<Tol, where Tol is an acceptable
residual norm error. Table 2 describes the étep' by step
stress update algorithm.

3.3 Consistent Tangent Operator

In a finite element framework the stress update algo-
rithm presented above is performed at each Gauss
quadrature point. At the global finite element level, a
nonlinear system of equations needs to be solved to satisfy
the balance of momentum (equilibrium). Various nonlinear

solvers are available for -this purpose (Dennis and



Table 2. Closest-Point-Projection iteration for the Manzari-Dafalias two-surface soil plasticity model

© 0 0 0 0
1. Initialize: k=0,€" =g, +Ae,a =0, m® =m,,F” =F,, 47" =0

2. Get trial stress, check yield condition, and evaluate the residuals

C® = f(s,,Ac") (Eqns. 45 and 46)

(%)
o =¢,+C: (s"’ —e")

n

n+l
& e ) ®
e —g ~As+Ay™'m
a® —q —AyPE®
R® = m®—m —Ay®m®
(k) BF®
F*-F, +Ay™'F

||r(k)|| _ \E m® p®
\

i £ <Tol, ang IRl <Tol, then: Exit

3. Linearize the residual and obtain increments of variables
aR(k)
a(se("),a("),m("),F“‘), A;/(") )

-1
Ale®,a®, m® F®, A},Uc)]: _JBIR®

J® =

4. Update state variables and consistency parameter
(k+1) (k) (k)
© =" +Agf

a(k+l) = (l(k) + A(l(k)

mED = ® L Ay ®

FHED ) _ AF®

A},(kn) - Ay(") + Azy(")

Set k< k+1 and GQTO 2

fO=f (o("),a("),m(")) *note f = yield function

Schnabel 1996), but one of the most common choices is
Newton’s method. It is well known that the use of the
consistent tangent operator %%, which is the discretized
algorithmic version of the elastoplastic tangent moduli (or
continuum tangent), preserves the asymptotic rate of
quadratic convergence of the global iterative process
(Simo and Taylor 1985). The fact that the evolution
 equations can be exactly linearized using the CPPM in
explicit form (Eqn. 55) leads to an important numerical
strategy that can lead to an efficient global iterative
scheme.

For a given strain increment, as R — 0, the residual

equations in Eqn. 47 are rewritten as

£ +Aym(e,a,mF) =€ + Ae (58)
a-Aya(s,a,m)=a, (59)

m—Aym(e,a,m,F) = m, (60)
F +AyF(o,a,mF)=F, (61)
f(o,0,m)=0 (62)

and after linearization they take the explicit compact form,

(dee] [ds) de’ | (de)
da 0 da. 0
Jidmt=:0 or dm =30}
dF 0 dF 0
ay] |0 aay) o]

The first element of this array holds information related
to the consistent tangent moduli. By extraction of the
upper-left block of the Jacobian matrix it is possible to
get
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de’ =P'J'Pds (64)

T . . . .
where P = (Idim(t:) ’Odim(a)+dim(m)+dim(l?)+l) 1S a projection matrix.
The Cauchy stress tensor is then obtained using Hooke’s

law
do =P"J'PC:de (65)

Then, the elastoplastic consistent tangent moduli takes
the explicit form (Perez-Foguet et al. 2000a; Perez-Foguet
et al. 2000b) of

C?=P'J'PC (66)

4. Asscessment of the Performance of CPPM
Scheme

In this section, the robustness, accuracy, and efficiency
of the numerical algorithm used in this study are
evaluated. For this purpose (1) model simulations of
stress-strain behavior for coarse-grained soils subjected to
realistic stress paths encountered in soil testing are
presented. Model parameters are obtained in the course
of calibrating coarse-grained soils as proposed by Choi
(2004), (2) an isoerror map is constructed to assess stress
errors generated by different strain increments, and (3)
the convergence rate of the global iteration process is
evaluated using the consistent tangent operator, C%, and
the tensor of elastic moduli, C.

Because most finite element aprroxiamtions postulate
the constitutive equations in terms of strains, the integ-
ration algorithms are formulated as strain-driven algorithms.
However, it is important to have a mixed formulation to
simulate soil laboratory testing, because, in general, driven
varables during lab-testing consist of the mixture between
stress and strain. In order to implement a mixed control
driver, together with an incremental constitutive law
formulation, iterative procedures are needed that aim at
satisfying the equilibrium of updated stresses with respect
to prescribed stress components. This step is similar to
what is commonly done in finite element analysis during

a global equilibrium iterative step. In the following
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simulations a ‘Mixed-control driver’ was used based on
the work done by Alawaji (1990) and Alawaji and
Runesson (1991).

4.1 Model Simulations Subjected to Typical
Stress—-paths

Using the model parameters referred to as Set | in
Table 3 and po = 160 kPa, Fig. 3 shows the model response
subjected to strain-controlled conventional triaxial compression
loading. The results are presented in terms of q vs. p,
g vs. &, and Au vs. &, plots. The initial void ratio, ie.,
eo = 0.623, was used in the simulations. Tolerances shown
in Table 2, Tol; = 0.000001 and Tol, = 0.000001, are
set for integration algorithm. Three specimens are loaded
to reach a maximum vertical strain of 0.1 (10%). The
figure shows the performance of three simulations with
the vertical strain increments of 0.005, 0.002, and 0.0002.

The simulation with a strain increment of 0.0002 is

Table 3. Model parameters used for simulation

Elastic parameters Set 1 Set 2
K, 32400 kPa 31400 kPa
14 0.25 0.2
b 0.86 0.5
Critical state Parameters ‘
M. /M, 1.6211.13 1.30/1.14
A 0.018 0.025
€osref 0.590 0.8
Py 1020 kPa 160 kPa
Mode! parameters
KR 4.3/2.3 4.0/2.0.
k1K 27.6/15.2 4.2/0.07
h, 1500 1200
C, 0.0 0.0
m 0.05 0.05
4, 0.50 2.64
F .. 100 100
o 100 100
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Fig. 3. Model simufation using closest-point-projection method with varying strain increment magnitudes under conventional
triaxial-compression foading: (a) stress path, {b) axial strain vs. deviatoric stress, and (c} pore water pressure vs. axial strain.

assumed to be exact results. As shown in the figure all
simulations are very close to each other indicating the
accuracy of the integration scheme in a relatively broad
range of strain increments. It is also noted that the
integration algorithm well accomodates the nonlinear
strain-hardening/soﬁéning behavior.

An error of estimated stresses was evaluated between
the simulation of 0.005 and 0.002. Here, a relative error,

ERR, is estimated using the expression

* *

G—0C JI|{6— 0

ERR =
Jo:o' (67)

where 0 is a stress state obtained from the algorithm and
o* is the exact solution corresponding to a specified strain
increment. Figure 4 shows a relative error of estimated
stresses where the exact solution was assumed to be the
simulation of 0.005 increment. The relative error was

initially high and decreases as the state of stress gets closer

to the critical state.

Error of estimated stress (%)

0 2 4 8 8 10
£ (%)
Fig. 4. Comparison of the errors in estimated stresses obtained

using A& =0.5% and Ag, =0.2% for strain-controlled
conventional triaxial compression loading.

As a second test the performance of the Manzari-
Dafalias Model together with the integration algorithm is
shown in Fig. 5 which depicts a model simulation under
pure shear loading. An applied incremental strain tensor

is given by
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Fig. 5. Mode! simulation with varying shear strain increment magnitudes under pure shear strain loading: (a) stress path and (b) shear

strain vs. shear stress

0 Ag, O
Ae=|Ag, 0 O
0 0 o0 (68)

Figures 5 (a) and 5 (b) show model responses in a q
vs. p and q vs. &, with the shear strain increments, A&,
of 0.002, 0.001, and 0.0002, respectively. The parameters

of Set 2 in Table 2 and the initial void ratio, ie., e =

0.810, were used in the simulations. From the simulations,
it is again concluded that all simulations are very close
to each other and the accuracy of the integration scheme
in a relatively broad range of strain increments is
acceptable,

4.2 Accuracy Assessment of the CPPM Method :
Isoerror Map

In order to assess the accuracy of the CPPM integration
algorithm used in this study an isoerror map was con-
structed for selected stress states baséd on strain-controlled
simulations using Eqn. 67. Similar procedures have been
used for the same purpose by a number of authors (Ortiz
and Popov 1985; Ortiz and Simo 1986; Macari, et al.
1997; Borja, et al. 2001; Manzari and Prachathananukit
2001). The exact solution 0* of Eqn. 67 for any given
strain increment was obtained by dividing the desired
strain increment into 500 steps with further subincremen-
tation producing no significant change in the numerical
results.

The parameters referred to as Set 1 in Table 3 were
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V88 (%)

Fig. 8. Isoerror map for closest-point-projection method.

used for generating the isoerror map. An initial mean
effective stress, p},, of 69 kPa and a void ratio, €, of
0.610 were used in the simulations. To bring the state
variables to a plastic state &, =0.05% was first applied
as an initial condition. The isoerror map was generated
by applying linear éombinations of isotropfc compression
and deviatoric shearing. Isotropic compression was defined
by equal compressive strain increments (i.e., A&, = A&y,
= A&, >0) while holding all shear components (ie.,
Agy, = A&y = Agyy = 0). Deviatoric shearing was defined
by equal shear strain increments (e, A&, =Ag; =Agy, >0)
while holding all compressive components (i.e., A&,
=Ag,, =A&y; =0), The isoerrorkmap was then plotted
on a plane defined in terms of the volumetric step size
(VSS = A&, +Agyy + Agyy) and deviatoric step size

(DSS =[2(Ack +Ael, + Aeh)/3), Figure 6 shows an



isoerror map for the CPPM algorithm. Inspection of this
figure shows that the order of the error increases as the
strain increments become larger. Note that errors are more
pronounced with increasing step size in the deviatoric
shearing direction than in the volumetric compression
direction. This is consistent with the fact that the current
formulation does not account for plastic yielding during
pure volumetric loading. Overall, the CPPM algorithm

tends to be accurate even for large strain increments.

4.3 Accuracy Assessment of the CPPM Method :
Convergence Rate

The main benefit of the CPPM integration algorithm
is that the resulting constitutive rate equations can be
exactly linearized (Simo and Hughes 1998). It is well
known that the use of a linearized stiffness, or consistent
tangent operator %, which is the discretized algorithmic
version of the elastoplastic tangent moduli, preserves the
asymptotic rate of quadratic convergence of global finite

(@)
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element Newton’s iteration processes. Here, such a
convergence rate is illustrated by means of a simple
numerical example.

Using the model parameters referred to as Set 1 in
Table 3 Fig. 7 shows convergence results for several load
steps. In the simulation, an initial mean effective stress,
Py, of 69 kPa and an initial void ratio, €, of 0.60 were
used. The convergence results shown in Figs. 7 (b), (c),
and (d) were obtained for load steps “1”, “2”, and “3”
as shown in Fig. 7 (a). The ‘Mixed-control driver’
developed in this study was used at the global iteration
level. The figures show convergence rates for two
different iteration moduli, i.e., tensor of elastic moduli,

C, and consistent tangent operator, C%, as plots of relative

error [8]/|2o| vs. number of iterations; where “g” denotes
a measure of the unbalanced equilibrium stress etror. C
is defined by the elastic moduli obtained at each load step
in the first iteration, while C® is the consistent tangent
operator evaluated for every CPPM iteration (Eqn. 66);
It is clear that the number of global iteration steps required

(b)
10° 4 : .
10° , b
—0— G : ~O(h®H)
b g% _O(h3Y)
1 0-1 o - 1 - i
1 3 5 7 9
Heration number
()]
100 A _ . ) ‘

w0 C : ~O(h®")
D (58P ~o(h2‘o)

10 — ; . ;
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teration number

fig. 7. Convergence resuits for mixed constitutive driver using C and C% as global iteration matrices: {a) applied stress path, (b) convergence
rate for stress point1, {c) convergence rate for stress point 2, and (d) convergence rate for stress point 3.
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for convergence using C? is much less thaﬁ that required
using C. Moreover, it is observed that the order of
convergence obtained using C? preserves a quadratic rate.
It is also interesting to note that, when using C, the
convergence rate tends to depend on the state of stress,
i.e., as the stress state gets closer to the critical state, the

rate of convergence tends to decrease.

5. Conclusion

In this paper a numerical integration technique for
two-surface soil plasticity was presented. An implicit
Backward Euler method was selected because of its
simplicity and robustness associated with numerical imple-
mentation of classical plasticity. It was shown that the
use of the Backward Euler method leads to the notion
of the Closest Point Projection Method (CPPM) as a
generalized return mapping algorithm that uses operator
splitting, that is, an elastic-predictor step followed by a
plastic-corrector step. A discrete form of the Manzari-

Dafalias soil plasticity model was presented within a

CPPM formulation, including nonlinear kinematic and.

isotropic hardening. Finally, the consistent tangent operator

de
4, which is the discretized algorithmic version of the

elastoplastic tangent moduli, was obtained by extracting
information from the Jacobian with an aid of a projection
matrix.

In order to evaluate the robustness and accuracy of the
CPPM algorithm, several model simulations under typical
stress-paths were presented and an isoerror map was
created for estimated stress states based on strain-
controlled numerical simulations. The results showed that
the CPPM algorithm produces robust and accurate estimate
of stress, even for relatively large strain increments. To
assess the efficiency of the CPPM method, the
convergence -rate of the global iteration process was
evaluated. The results showed that using the consistent
tangent operator a quadratic rate of convergence is achieved.
Based on the verification studies, it is concluded that the
CPPM algorithm used for the integration of the constitutive
relations provides an accurate and robust numerical

implementation.
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