DOI QR코드

DOI QR Code

Molecular Characterization of Apple stem grooving virus Isolated from Talaromyces flavus

  • Shim Hye-Kyung (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Hwang Kyu-Hyon (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Shim Chang-Ki (Organic Farming Technology Division, National Institute of Agricultural Science and Technology, Rural Development Administration (RDA)) ;
  • Son Su-Wan (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Kim Dong-Giun (Environmental Biotechnology National Core Research Center and Division of Applied Life Science, Gyeongsang National University) ;
  • Choi Yong-Mun (Pear Experiment Station, National Horticultural Research Institute, RDA) ;
  • Chung Young-Jae (Department of Biology, Seonam University) ;
  • Kim Dae-Hyun (Evaluation Coordination Officer, Planning and Management Officer, RDA) ;
  • Jee Hyeong-Jin (Organic Farming Technology Division, National Institute of Agricultural Science and Technology, Rural Development Administration (RDA)) ;
  • Lee Suk-Chan (Department of Genetic Engineering, Sungkyunkwan University)
  • Published : 2006.09.01

Abstract

Talaromyces flavus mediates the transmission of Apple stem grooving virus (ASGV) to several host plants. The ASGV-F carried by T.flavus was partially purified from the fungus. Based on sequence analysis and homology searches, this is closely related to other ASGV strains isolated from host plants. The partially purified viral coat protein (CP) was separated on a 12% SDS-polyacrylamide gel and analyzed by Western blotting with an ASGV anti-serum. A single band at 28 kDa reacted with the ASGV anti-serum. The deduced amino acid sequence of the ORF-l showed conserved domains, including an NTP-binding helicase motif, GFAGSGKT. The amino acid sequences of the helicase and CP showed strong homology to other ASGV strains (98%). All ASGV isolated from plants and fungi had salt bridges composed of the CP and the GFAGSGKT motif of the helicase, which are commonly conserved in plant viruses. These results suggest that ASGV-F is one of ASGV strains isolated from T.flavus based on sequence similarity as well as the serological analysis of CP.

Keywords

References

  1. Ahn, I. P. and Lee, Y. H. 2001. A viral double-stranded RNA up regulates the fungal virulence of Nectria radicicola. Mol. Plant-Microbe Interact. 14:496-507 https://doi.org/10.1094/MPMI.2001.14.4.496
  2. Buck, K. W. 1986. Fungal Virology-An overview. In: Fungal virology ed. by Buck KW, pp. 1-84.CRC press, Boca Raton
  3. Choi, K. H. and Nuss, D. L. 1992. Hypovirulence of chestnut blight fungus conferred by an infectious viral cDNA. Science 257:800-803 https://doi.org/10.1126/science.1496400
  4. Dolja, V. V., Boyko, V. P., Agranovsky, A. A. and Koonin, E. V. 1991. Phylogeny of capsid proteins of rod-shaped and filamentous RNA plant viruses: two families with distinct patterns of sequence and probably structure conservation. Virology 184:79-86 https://doi.org/10.1016/0042-6822(91)90823-T
  5. Erasmus, D. S., Rybicki, E. P. and von Wechmar, M. B. 1983. The association of brome mosaic virus and wheat rust: Detection of virus in/on uredospores. J. Phytopathol. 108:34-40 https://doi.org/10.1111/j.1439-0434.1983.tb00561.x
  6. Erasmus, D. S. and von Wechmar, M. B. 1983. Brome mosaic virus (BMV) reduces susceptibility of wheat to stem rust (Puccinia graminis tritici). Plant Dis. 67:1196-1198 https://doi.org/10.1094/PD-67-1196
  7. Gorbalenya, A. E. and Koonin, E. V. 1989. Viral proteins containing the purine NTP-binding sequence pattern. Nucl Acids Res. 17:8413-8440 https://doi.org/10.1093/nar/17.21.8413
  8. Hong, Y., Cole, T. E., Brasier, C. M. and Buck, K. W. 1998. Novel structures of two virus-like RNA elements from a diseased isolate of the Dutch elm disease fungus, Ophiostoma novoulmi. Virology 242:80-89 https://doi.org/10.1006/viro.1997.8999
  9. Kim, J. W., Kim, S. Y. and Kim, K. M. 2003. Genome organization and expression of the Penicillium Stoloniferum virus S. Virus Genes 27:249-256 https://doi.org/10.1023/A:1026343831909
  10. Koonin, E. V. 1991. The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J. Gen. Virol. 72:2197-2206 https://doi.org/10.1099/0022-1317-72-9-2197
  11. Lakshman, D. K., Jian, J. and Tavantzis, S. M. 1998. A double-stranded RNA element from a hypovirulent strain of Rhizoctonia solani occurs in DNA form and is genetically related to the pentafunctional AROM protein of the shikimate pathway. Proc. Natl. Acad. Sci. USA 95:6425-6429
  12. Lister, R. M. 1970. Apple stem grooving virus. CMI/AAB Descriptions of plant viruses No. 31
  13. Ohira, K., Namba, S., Rozanov, M., Kusumi, T. and Tsuchizaki, T. 1995. Complete sequence of an infecelous full-length cDNA clone of Citrus tatter leaf capillovirus comparative sequence analysis of capillovirus genomes. J. Gen. Virol. 76:2305-2309 https://doi.org/10.1099/0022-1317-76-9-2305
  14. Revill, P. A., Davidson, A. D. and Wright, P. J. 1994. The nucleotide sequence and genome organization of mushroom bacilliform virus: a single-stranded RNA virus of Agaricus bisporus (Lange) Imbach. Virology 202:904-911 https://doi.org/10.1006/viro.1994.1412
  15. Robyn, L. J. H., Beever, R. E., Pearson, M. N. and Foster, R. L. S. 2001. Genomic characterization of Botrytis virus F, a flexous rod-shaped mycovirus resembling plant 'potex-like' viruses. J. Gen. Virol. 82:67-78 https://doi.org/10.1099/0022-1317-82-1-67
  16. Rozanov, M. N., Koonin, E. V. and Gorbalenya, A. E. 1992. Conservation of the putative methyltransferase domain: a hallmark of the 'Sindbis-like' supergroup of positive-strand RNA viruses. J. Gen. Virol.73:2129-2134 https://doi.org/10.1099/0022-1317-73-8-2129
  17. Shim, H. K., Min, Y. J., Hong, S. Y., Kwon, M. S., Kim, H. R., Choi, Y. M., Lee, S. C. and Yang, J. M. 2004. Nucleotide Sequences of Korean Isolate of Apple Stem Grooving Virus Associated with Black Necrotic Leaf Spot Disease on Pear (Pyrus pyrifolia). Mol. cells 18:192-199
  18. Tavantzis, S. M., Romaine, C. P. and Smith, S. H. 1980. Purification and partial characterization of a bacilliform virus from Agaricus bisporus. Virology 105:94-102 https://doi.org/10.1016/0042-6822(80)90159-2
  19. Thompson, J. D., Higgins, D. G and Gibson, T. J .1994. CLUSTAL W: improving the sensitivity of progressive multipIe sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic. Acids Res. 22:4673-4680 https://doi.org/10.1093/nar/22.22.4673
  20. von Wechmar, M. B., Chauhan, R. and Knox, E. 1992. Fungal transmission of a potyvirus: uredospores of Puccinia sorghi transmit Maize dwarf mosaic virus. Arch. Virol. Suppl. 5:239-250 https://doi.org/10.1007/978-3-7091-6920-9_24
  21. Yokoi, T., Takemoto, Y, Suzuki, M., Yamashita, S. and Hibi, T. 1999. The nucleotide sequence and genome orgnization of Sclerophthora macrospora virus B. Virology 264: 344-349 https://doi.org/10.1006/viro.1999.0018
  22. Yoshikawa, N., Sasaki, E., Kato, M. and Takahashi, T. 1992. The nucleotide sequence of Apple stem grooving capillovirus genome. Virology 191:98-105 https://doi.org/10.1016/0042-6822(92)90170-T
  23. Yoshikawa, N., Sasamoto, K., Sakurada, M., Takahashi, T. and Yanase, H. 1996. Apple stem grooving and citrus tatter leaf capilloviruses obtained from a single shoot of Japanese Pear (Pyrus serotina). Ann. Phytopathol. Soc. Jpn. 62:119-124 https://doi.org/10.3186/jjphytopath.62.119
  24. Yu, H. J., Lim, D. B. and Lee, H. S. 2003. Characterization of a novel single-stranded RNA mycovirus in Pleurotus ostreatus. Virology 314:9-15 https://doi.org/10.1016/S0042-6822(03)00382-9

Cited by

  1. Efficacy of virus elimination from in vitro-cultured sand pear (Pyrus pyrifolia) by chemotherapy combined with thermotherapy vol.37, 2012, https://doi.org/10.1016/j.cropro.2012.02.017
  2. Complete sequence of an Apple stem grooving virus (ASGV) isolate from China vol.45, pp.3, 2012, https://doi.org/10.1007/s11262-012-0799-5